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Abstract. the process of verifying signatures has wide-ranging applications in computer systems, including 

financial opera- tions, electronic document signing, and user identity verification. This approach has the 

advantage of community acceptance and presents a less intrusive alternative than other biological 

authentication methods. Deep learning (DL) and Convolutional Neural Networks (CNNs) have emerged as 

prominent tools in the field of signature verification, significantly enhancing the accuracy and effectiveness 

of these systems by effectively extracting discriminative features from signature images. However, 

optimizing the hyperparameters in CNN models remains a challenging task, as it directly affects the 

efficiency and accuracy of the models. Currently, the design of CNN architectures relies heavily on manual 

adjustments, which can be time consuming and may not yield optimal results. To address this issue, the 

proposed method focuses on employing a genetic algorithm to evolve a population of CNN models, thereby 

enabling the automatic discovery of the most suitable architecture for offline signature verification. By 

leveraging the optimization capabilities of the genetic algorithm, the proposed approach aims to improve 

the overall performance and effectiveness of the signature verification model. The effectiveness of the 

proposed method was evaluated using multiple datasets, including BHSig260-Bengali, BHSig260-Hindiin, 

GPDS, and CEDAR. Through rigorous testing, the approach achieved remarkable discrimination rates with 

a False Rejection Rate (FRR) of 2.5%-, False Acceptance Rate (FAR) of 3.2%-, Equal Error Rate (EER) of 

2.35%-, and accuracy rate of 97.73%-. 

Keywords—Offline Signature Verification, Convolutional Neural Network, Deep Learning, and Genetic 

Algorithm. 

 

I. INTRODUCTION 

relevance [5]. Given the continuous 

authorization of financial doc- uments and 

business transactions through signatures, the 

primary goal of handwriting signature 

verification systems is to differenti- 

Biometric systems have become essential for 

personal authen- tication by employing 

behavioral or physiological characteristics. In 

the realm of biometrics, handwritten sig-

natures have emerged as widely used tools for 

secure verification [1, 2]. Signature verifi- 

cation has been extensively researched, with a 

distinction between two main categories: 

online and offline [3]. Online signature 

verification focuses on capturing dynamic 

information during the writing process, 

whereas offline signature verification deals 

with static signature images, posing greater 

challenges and typically yielding lower 

accuracy compared to its online counterpart 

[4]. However, offline signature verification 

offers distinct advantages, despite its lower 

accuracy. It does not require specialized in- 

put devices, making it more accessible and 

applicable to a wider range of scenarios. 

Moreover, offline signature verification spans 

various domains, thereby expanding its 

potential applications and ate between genuine 

signatures created by authorized writers and 
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forged signatures produced by fraudulent 

individuals [6]. Forgery in the signature 

verification field can be categorized into three 

types [7]. Unskilled forgery occurs when a 

person forges another indi- vidual’s signature 

without possessing knowledge of that person. 

Random forgery involves a person who knows 

only the signer’s name without having 

previously seen its genuine signature. On the 

other hand, skilled forgery is performed by an 

individual who possesses knowledge of both 

the signer’s name and the shape of their 

genuine signature. These distinctions highlight 

the complex- ity and importance of offline 

signature verification as they play a critical 

role in safeguarding against fraudulent 

activities. Further  

advancements in this field have the potential to 

enhance security measures and improve the 

accuracy of signature-verification systems [8]. 

Handwritten Signature Verification systems 

employ two classifications of learning: writer-

independent (WI) and writer- dependent (WD) 

[9, 10]. In the Writer-Independent state, 

learning is performed by all signatures in the 

database collectively, whereas in the Writer-

Dependent state, learning is conducted 

independently for individual signatures. The 

WI method has gained popularity because it 

simplifies the addition of new individuals to the 

system, as the classification is based on a 

single category for all per-sons [11, 12]. In 

recent years, numerous automated systems 

have been developed to verify the authenticity 

of handwritten signatures us- ing various 

algorithms and methods. Deep learning, 

specifically Convolutional Neural Net-works 

(CNNs), has emerged as a dom- inant approach 

owing to its effectiveness in image 

classification and processing [13, 14]. CNNs, 

such as VGGNet, GoogleNet [15], ResNet 

[16], CapsNet [17], and DenseNet [18] have 

demon- strated significant improvements in 

efficiency and performance in real-world 

applications [19, 20]. The performance of 

CNNs re- lies heavily on their architecture [21, 

22]. Experts in this field have designed 

different structures and versions to address 

specific classification problems. However, it is 

challenging to find a CNN model that can 

effectively solve all classification problems. 

The manual design of CNN architectures 

involves iterative attempts to find suitable 

parameters that yield the best results, which 

often requires a substantial amount of time 

[23]. Figures (1,2, and 3) show some samples 

from the dataset used. 

  

 

Fig. 1. Sample of Signatures in BHSig260-Bengali Dataset. 

 

Fig. 2. Sample of Signatures GPDS-300 Dataset. 

 

Fig. 3. Sample Signatures from the CEDAR Dataset. 
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To address this challenge, this study proposes 

a method that utilizes a genetic algorithm to 

optimize the hyperparameters of the CNN 

architecture for offline signature verification. 

The genetic algorithm assists in determining 

the optimal combination of hy- perparameters, 

significantly reducing the time required for 

manual design. By leveraging the genetic 

algorithm, the proposed method aims to 

enhance the performance and efficiency of the 

CNN model for offline signature verification, 

providing more accurate and re- liable results. 

II. LITERATURE REVIEW 

In the field of artificial intelligence, particularly 

deep learning, Convolutional Neural Networks 

(CNNs) have been widely used in various 

applications, including computer vision, 

pattern recog- nition, and natural language 

processing [24]. CNNs consist of several key 

components, including a Convolutional Layer, 

Acti- vating function, pool-ing layer, and fully 

connected layer. The Convolutional Layer 

applies filters (kernels) to extract features or 

patterns from the input image matrix, and 

multiple filters can be used to capture the 

different features. The Pooling Layer reduces 

the size of the matrices by applying functions, 

such as Max or Average pooling. The Fully 

connected layer is a multilayer percep- tron, 

where neurons are connected to all the nodes of 

the previous layer and are responsible for the 

final classification. Different ap- proaches 

have been proposed for offline signature 

verification. A method known as the Siamese 

network was introduced in [25]. It utilizes 

writer-independent (WI) feature learning and 

measures the similarity or dissimilarity 

between Siamese network outputs using the 

Euclidean distance. Another study [26] 

employed a Siamese Neural Network for 

signature verification, training, and evalua- 

tion of two similar neural networks on the 

same data. The use of the Siamese network 

architecture helped reduce the required 

training data volume and resulted in a 13 %- 

increase in system efficiency. Genetic 

algorithms have also been applied to optimize 

CNN architectures. For example, in a study by 

[27], two models for predicting the strength of 

adhesively bonded joints were de- signed using 

a CNN. The architecture of one model was 

manually developed, whereas the architecture 

of the other model was opti- mized using a 

genetic algorithm. The improved model with 

genetic algorithm optimization demonstrated 

better results. In image clas- sification tasks, 

genetic algorithms have been employed to 

optimize CNN architectures using datasets 

such as CIFAR10, MNIST, and Cal-tech256 

[23]. By automatically adjusting the model’s 

param- eters, the genetic algorithm improved 

the accuracy compared to the other tested 

models. In [28], the authors presented a hybrid 

ap- proach for extracting features from signature 

images. We utilized a Convolutional Neural 

Network (CNN) and Histogram of Oriented 

Gradients (HOG) techniques, followed by a 

feature-selection algo- rithm (Decision Trees) 

to identify important features. The CNN and 

HOG methods were combined. We evaluated 

the effective- ness of our hybrid approach using 

three classifiers: long short-term memory, 

support vector machine, and K-nearest 

Neighbor. The experimental results 

demonstrated that the proposed model per- 

formed satisfactorily in terms of efficiency and 

predictive ability. It achieved accuracy rates of 

95.4 %-, 95.2 %-, and 92.7 %- with the UTSig 

dataset and 93.7 %-, 94.1 %-, and 91.3 %- with 

the CEDAR dataset. Another study [29] 

applied a genetic algorithm to select 

parameters such as the number of filters, filter 

size, and number of layers added to the 

trainable layers of a CNN transfer model. The 

proposed method achieved an accuracy of 97 

%- in classify- ing cat and dog datasets over 15 

generations. In the domain of finger-vein 



Offline Signature Verification Using Deep learning and Genetic Algorithm                                    89  

 

recognition, a system called a Genetic 

Algorithm with a Convolutional Neural 

Network (GA-CNN) was developed [30]. 

The GA-CNN system utilizes a genetic 

algorithm to initialize the training phase of the 

CNN, resulting in improved accuracy, sensi- 

tivity, and precision. Genetic algorithms have 

also been used for feature selection in signature 

verifications. In one study [31], a genetic 

algorithm was employed to select the optimal 

set of partial curves and features encoded into 

chromosomes for verification. In addition, 

genetic algorithms have been applied to weigh 

individual feature components in offline 

signature verification systems[32]. In [33], 

four different pattern representation schemes 

using genetic algorithms were used to 

determine the weights of feature-based 

classifiers, leading to increased verification 

accuracy. Further- more, a model was 

developed for offline signature verification 

using CNNs (VGG16, VGG19, and ResNet50) 

with additional parameters, and trained and 

tested on the SigComp2009 dataset. The 

VGG16 model demonstrated a high efficiency 

of 97 %- com- pared with the other models. 

In [34], a method was proposed to investigate 

the feasibility of employing Genetic 

Algorithms to automatically design CNN 

architectures. The Genetic Algorithm 

generates CNN architectures, which are then 

trained from the be- ginning using a Gradient-

Descent Algorithm. The performance of the 

evolved CNN architecture was evaluated at 

each step of the evolutionary process, using a 

validation set. This algorithm does not require 

any preprocessing or post-processing of data 

before or after executing the Genetic 

Algorithm. In summary, this study focuses on 

developing an offline signature verification 

system us- ing Convolutional Neural Networks 

(CNNs) in combination with a genetic 

algorithm. A genetic algorithm was employed 

to search for the best model architecture 

hyperparameters and optimize the 

performance and accuracy of the system. 

III. METHODOLOGY 

Offline signature verification is a complex 

pattern-recognition problem that involves 

recognizing and verifying genuine handwrit- 

ten signatures while detecting forgery 

attempts. To address this challenge, a 

comprehensive model for offline signature 

verifica- tion needs to be developed. 

Convolutional Neural Networks are 

particularly suitable architectures for signature 

verification [35]. The proposed model consists 

of the following stages. The first stage was the 

preprocessing stage, in which the signature 

image was prepared for further analysis. This 

typically involves tasks such as noise removal, 

image enhancement, and normalization to 

ensure consistent input for the subsequent 

stages. The second crucial stage is GA-based 

hyperparameter selection. Hyperpa- rameters 

are essential variables that determine the 

architecture and behavior of the Convolutional 

Neural Network (CNN). How- ever, manually 

finding optimal hyperparameters is a 

challenging and time-consuming task. By 

employing a genetic algorithm, the model can 

automatically search for and select the best 

combination of hyperparameters, leading to 

improved performance and accu- racy. The 

third stage involves the CNN itself, which is 

responsible for the feature extraction, training, 

and testing. CNNs are powerful deep-learning 

architectures that excel in the extraction of 

meaning- ful features from images. They 

consist of multiple convolutional 

and pooling layers that learn the hierarchical 

representations of signature data. The extracted 

features are then utilized for training the model 

on a labeled dataset and for subsequent testing 

to evalu- ate the model’s performance in 

signature verification. Each stage within the 

model comprises multiple steps, such as data 

prepro- cessing techniques, genetic algorithm 

initialization and evolution, CNN architecture 

design, training data preparation, model train- 
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ing, and testing. These steps work in 

conjunction to create an effective and robust 

offline signature verification system. Figure 4 

visually represents the main stages and 

associated steps within each stage of the 

proposed model, providing a clear overview of 

the workflow involved in the offline signature 

verification. 

Fig. 4. Proposed model architectures 

A Signature Images Preprocessing 

Before starting feature extraction, essential 

processes must be applied to the image 

signature. These operations include the fol- 

lowing. 

• The color images were converted into 

grayscale images. 

• Each image was resized to 100 × 100 

pixels. 

• The image points were read and stored in 

an image matrix. 

B The Feature Extraction with CNN 

The primary obstacle in addressing the issue of 

hand-written signature verification lies in 

identifying the distinguishing features that 

allow the system to differentiate between 

authentic and forged signatures [36]. 

Convolutional Neural Networks (CNNs) are a 

type of deep learning model primarily used for 

image and video analy- sis tasks[37]. They are 

designed to automatically learn and extract 

meaningful features from input data, making 

them well-suited for tasks such as image 

classification, object detection, and image seg- 

mentation. CNNs were inspired by the 

organization of the visual cortex in the human 

brain, which contains specialized neurons that 

respond to specific receptive fields. Similarly, 
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CNNs consist of interconnected layers of 

artificial neurons that learn to recognize 

patterns and spatial hierarchies in the data. The 

key components of a CNN are convolutional, 

pooling, and fully connected layers. Here’s 

how they work: Convolutional Layers: These 

layers per- form convolution operations on 

input data. A convolution involves sliding a 

small window, called a filter or kernel, over the 

input and computing dot products between the 

filter and the local patches of the input. This 

process captures the local patterns and 

features. Convolutional layers can have 

multiple filters to learn different fea- tures 

simultaneously. Pooling Layers: Pooling 

layers reduce the spatial dimensions of the data, 

helping to make the learned features more 

robust and invariant to small translations and 

distortions. The most common pooling 

operation is max-pooling, which selects the 

maximum value within each local region of the 

input. Fully Con- nected Layers: After several 

convolutional and pooling layers, the output is 

flattened and connected to the fully connected 

layers. These layers resemble traditional neural 

networks, in which each neuron is connected 

to every neuron in the previous layer. Fully 

connected layers learn global patterns and 

make predictions based on the extracted 

features. During the training process, CNNs 

learn to optimize their internal parameters 

(weights and biases) by min- imizing a chosen 

loss function. This is usually performed using 

gradient-based optimization algorithms, such 

as stochastic gradi- ent descent (SGD) or its 

variants. The backpropagation algorithm 

computes the weight loss gradients, allowing 

for efficient parame- ter updates. The proposed 

model function creates a convolutional neural 

network (CNN) model based on the parameters 

provided by the genetic algorithm and trains it 

using the given training data. Here, is a 

breakdown of the steps performed by function: 

1) We defined an early stopping callback to 

monitor the valida- tion loss and stop training if 

the loss did not improve after two epochs. 

2) A 2D convolutional layer is added to the 

model with a spec- ified number of filters, 

kernel size, and activation function. The input 

shape was set to the provided input shape. 

3) Another 2D convolutional layer is added to 

the model with a specified number of filters, 

kernel size, padding, and activa- tion function. 

4) A max pooling layer is added to the model 

with a specified pool size. 

5) Steps 2 and 3 are repeated for two more 

convolutional layers. 

6) Add a dropout layer with a specified 

dropout rate. 

7) The output is flattened from the previous 

layers. 

8) Add a dense (fully connected) layer to the 

model with a spec- ified number of units and 

activation function ‘ReLU’ [38]. 

9) Add another dropout layer with a specified 

drop-out rate. 

10) A dense output is added to the layer with the 

activation func- tion ‘Softmax’ [39] and the 

specified number of classes and activation 

function. 

11) Return the trained model using the training 

dataset. 

C The Genetic Algorithm 

AG is used to determine the best combination of 

hyperparame- ters for the convolutional neural 

network model, which can achieve high 

accuracy in classifying signatures. It begins by 

randomly ini- tializing a population of network 

configurations, where each con- figuration 

representation of genes is a set of 

hyperparameters for the convolutional neural 

network. The fitness of each network was 

evaluated by training and testing the 

corresponding convolutional neural network 

model on the signature data. The genetic algo- 

rithm then applies selection, crossover, and 

mutation operations to the population. 

Selection favors networks with higher fitness, 

allowing them to pass their genetic material 

(hyperparameters) to the next generation. 
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Crossover combines the genetic material of 

two-parent networks to create new child 

networks, potentially inheriting beneficial 

hyperparameter combinations. Mutation in- 

troduces random changes to the 

hyperparameters of the networks, promoting 

the exploration of the search space. This 

process of evaluating the fitness, selecting the 

best networks, generating new networks 

through crossover, and introducing mutations is 

repeated for multiple generations. The 

algorithm aims to iteratively improve 

the population by evolving networks with 

improved performance. 
 

Table I. Random Generated Initial Population. 

Hyperparame teRr ange 

Epoch Random (2, 25) 

Filter Size Choice (16, 32, 64, 96) 

Kernel Size Choice [(3x3), (5x5)] 

Unit Choice (128, 256, 512) 

Dropout Choice (0, 0.25, 0.50) 

a) Initialization The constructor initializes 

the hyperparame- ters randomly, including the 

number of epochs, filter size, kernel size, 

dropout rate, activation function, loss 

function, optimizer, and accuracy. This step 

returns a dictionary that contains the current 

values of the hyperparameters. A CNN model 

was built based on the given hyperparameters. 

It uses a combination of convolutional, 

pooling, dropout, and dense layers to construct 

the model. The model was compiled us- ing a 

specified optimizer, loss function, and metrics. 

This method initializes the attributes of an 

instance with random or predefined values, as 

listed in Table I. The attributes used included 

the following: 

1) epoch: An integer attribute is randomly 

initialized be- tween 1 and 25. 

2) filter1 and filter2: Integer attributes were 

randomly cho- sen from the values 64, 32, and 

16. 

3) units1: An integer attribute is randomly 

chosen from values 128, 256, and 512. 

4) kernel1 and kernel2: Tuple attributes 

randomly chosen from the values (3, 3) and (5, 

5). 

5) dropout1 and dropout2: Float attributes 

randomly cho- sen from the values 0.25 and 

0.5. 

b) Fitness Function The fitness function 

equation represents the fitness of each network 

in the population. It trains and tests the 

Convolutional Neural Network model with the 

given hyperparameters, and calculates its 

accuracy. The accuracy was then stored. In 

addition, the function prints the accu- racy and 

classification reports for each network. The 

fitness function evaluates the fitness of each 

network in the network list by training and 

evaluating a convolutional neural network 

model for each network parameter 

configuration. This is an explanation of the 

steps performed by the function. 

1) Selecting for each one the population 

dictionary from the list. 

2) For convenience, we take the parameter 

values from the population dictionary and 

assign them to the corre- sponding variables. 

3) We attempted to create and train a CNN 

model using the CNN model function with the 

extracted parameter values and input data. 

4) The performance of the trained model is 

evaluated using the evaluation method on the 

test data, and the accuracy score is stored in the 

accuracy attribute of the network. 

5) The accuracy of the model was obtained as a 

percentage. 

6) Generate predictions using the trained 

model and obtain classification reports 

comparing predicted labels with true labels. 
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7) The updated list of networks is returned, 

including the accuracy values for each 

network. 

c) Selection The selection function performs 

selection by sort- ing the population based on 

the accuracy of each network and retaining the 

top individuals. The number of individuals 

selected was equal to the population size. 

1) The population list is sorted in descending 

order based on the individual accuracy 

attributes. 

2) The top individuals are selected from the 

sorted popu- lation based on a specified 

percentage or number. 

3) The selected population is then returned. 

d)  Crossover The crossover function is 

responsible for perform- ing a crossover by 

randomly selecting two parent networks from 

the population and creating two child 

networks. The cross-over process follows 

these steps for each of the two parents from the 

population, using a selection process: 

1) The total number of attributes 

(hyperparameters) in the parents was divided 

into half. 

2) Take the first half of the attributes from the 

first parent and assign them to the 

corresponding attributes of the second child. 

3) Take the first half of the attributes from the 

second parent and assign them to the 

corresponding attributes of the first child. 

4) Combine the offspring list, which includes 

two newly created child networks, with the 

current population, forming a new population. 

5) Return to the new population. 

This process enables the exchange of genetic 

information be- tween parent networks, 

allowing the child networks to inherit certain 

hyperparameters from their parents. By 

combining attributes from different parents, 

crossover promotes the ex- ploration and 

exploitation of potential solutions within a pop- 

ulation. 

e) Mutation The mutation function is 

responsible for introduc- ing random mutations 

to the hyperparameters of the networks within 

the population. The mutation process follows 

these steps for each newly generated child 

from the previous pro- cess. 

1) A random uniform function is used to 

generate a random number between 0 and 1. 

2) The random “ function” was used to 

generate a random integer within the specified 

range. 

3) A random module was imported at the 

beginning of the code to access these 

functions. 

4) The mutation process remains the same, 

where the “epoch” and “units” attributes of 

each individual are modified if the generated 

random number is less than or equal to 0.1. 

5) Finally, the modified population was 

returned. 

D  Training and Testing Stage 

In the training and testing stages of the 

signature verification process, our objective 

was to develop an efficient model for of- fline 

signature verification using a genetic 

algorithm and evaluate its performance on 

multiple datasets. Table II shows lists of the 

datasets used in the proposed model. Our 

study employed Con- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94                                  Abdoulwase M. Obaid Al-Azzani
, 

and Abdulbaset M. Qaid Musleh  

 

 

Table II. Dataset Used in the Proposed System. 

 

Type GPDS-300 CEDAR Bengali Hindi 

Signers 300 100 100 160 

Genuine 24 24 24 24 

Forged 30  24 30 30 

Training 10200 1540 3400 5440 

Testing 6000 1100 2000 3200 

volutional Neural Networks (CNNs), a deep 

learning technique known for its effectiveness 

in feature extraction for signature ver- 

ification. However, manually designing CNN 

models often leads to suboptimal results 

because of the challenge of determining op- 

timal architecture and hyperparameters. To 

address this challenge, we propose the use of a 

genetic algorithm, inspired by natural 

selection to evolve a population of CNN 

models. The genetic algorithm explores 

different combinations of architectural con- 

figurations, such as the number and size of 

convolutional layers, pooling layers, fully 

connected layers, activation functions, and 

regularization techniques. The fitness of each 

CNN model was evaluated using a fitness 

function that considers metrics such as 

accuracy, loss, and convergence speed. The 

algorithm selects the most promising models 

based on their fitness scores and applies 

genetic operators such as crossover and 

mutation to create a new generation of models. 

This evolutionary process continues, gradu- 

ally improving the fitness of the models until 

the genetic algorithm identifies the CNN 

architecture with the best performance on the 

training dataset. Once the optimal architecture 

is determined, we proceed to the testing phase, 

where we evaluate the selected model on 

multiple datasets, including BHSig260-

Bengali, BHSig260- Hindi, GPDS[40], and 

CEDAR, to ensure the robustness and gen- 

eralization of our approach. 

IV. RESULTS 

During testing, we computed various 

performance metrics, such as the False 

Rejection Rate (FRR), False Acceptance Rate 

(FAR), Equal Error Rate (EER), and overall 

accuracy, to assess the effectiveness of our 

method. Our experimental results demon- 

strated impressive discrimination rates, with 

an FRR of 2.5%-, FAR of 3.2%-, EER of 

2.35%-, and accuracy rate of 97.73%-. These 

findings highlight the effectiveness of our GA-

based ap- proach in designing highly efficient 

and accurate offline signature verification 

models. The results are summarized in Table 

III, which presents the parameters and 

accuracy during the testing stage. Our study 

underscores the significance of leveraging 

genetic algorithms to optimize CNN 

architectures in signature verification systems. 

The superior performance of our proposed 

method has the poten- tial for various real-

world applications that require reliable and 

non-intrusive signature verification. 

V. DISCUSSION 

Each dataset was subdivided into two parts: a 

training set and testing. The performance of 

the proposed system was measured using three 

global scales which are as follows: Accuracy 

is the ratio of the number of correctly 

categorized signatures to the total number of 

complete signatures. These are the False 

Acceptance Rate (FAR) and False Rejection 

Rate (FRR), which are the pres- ence of the 

forgeries signatures that are incorrectly 
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classified. An equal Error Rate (EER) is 

applied to evaluate the equilibrium point where 

the FRR equals the FAR. A lower EER indicates 

a better per- formance for the model. The 

results obtained from the proposed method of 

constructing the CNN model using the genetic 

algorithm were compared with those of other 

methods using hand-built CNN models. The 

results were compared with those of other 

studies. Table IV. presents a comparison of 

the performance of different methods with our 

method on the CEDAR dataset in terms of 

FAR, FRR, EER, and accuracy. ”Our method” 

outperforms the other methods in terms of 

FAR, FRR, EER, and accuracy, indicating its 

superior performance on the CEDAR dataset. 

The ”Surround- edness Features” meth-od 

[11] achieves a False Acceptance Rate (FAR) 

of 8.33%-, False Rejection Rate (FRR) of 

8.33%-, Equal Error Rate (EER) of 8.33%-, 

and accuracy of 91.67%-. On the other hand, 

the ”Multi-Path Siamese (MA-SCN)” method 

[41] yields an FRR of 18.35%-, FAR of 

19.21%-, EER of 18.92%-, and accuracy of 

80.75%-. Additionally, the ”Siamese CNN” 

method 

[42] achieves a FAR of 6.78%-, FRR of 

4.20%-, and accuracy of 95.66%-. In 

comparison, our proposed method 

outperformed these approaches with a FAR of 

2.5%-, FRR of 2.2%-, EER of 2.35%-, and 

accuracy of 97.73%-. 
Table III. The Parameter Setting of The 

Proposed System. 

 

Parameter 
Dataset Name 

GPDS-300 CEDAR BHSig260-B BHSig260-H 

Max Epochs 20 21 12 14 

Parameters 2,402,731 2,545,911 2,426,120 1,241,250 

Layer 1 Conv2D (32, 3x3) (32, 3x3) (64, 3x3) (32, 3x3) 

Layer 2 & MaxPool(2, 2) Conv2D (32, 3x3) Conv2D (64, 3x3) Conv2D (32, 3x3) Conv2D (32, 3x3) 

Layer 3 & MaxPool(2, 2) Conv2D (32, 3x3) Conv2D (32, 3x3) Conv2D (64, 3x3) Conv2D (32, 3x3) 

Layer 4 & MaxPool(2, 2) Conv2D (32, 3x3) Conv2D (64, 3x3) Conv2D (32, 3x3) Conv2D (32, 3x3) 

Dropout 0.50 0.25 0.25 0.50 

Flatten 512 264 512 256 

Accuracy 0.93 0.977 0.958 0.922 

Table IV. Comparison Results for CEDAR Dataset. 

 

Method 
CEDAR 

FAR FRR EER 

Surroundedness Features [11] 8.33 8.33 8.33 

Multi-Path (MA-SCN) [41] 19.21 18.35 18.92 

Siamese CNN [42] 6.78 4.20 – 

Our method 2.5 2.2 2.35 

Table V provides a comparison of different 

methods, includ- ing ”CNN-GP” [43], 

”GoogLeNet Inception-v1 and Inception-v3” 

[44], and our method, on the GPDS-300 

dataset in terms of FAR, FRR, EER, and 

accuracy. The ”CNN-GP” method achieves a 

FAR of 9.08%-, while the specific FAR value 

for the ”GoogLeNet Inception-v1 and 

Inception-v3” methods is not provided. In 

con- trast, our method achieved a FAR of 

9.1%-. The ”CNN-GP” method has an FRR of 

20.60%-, the specific FRR value for the 

”GoogLeNet Inception-v1 and Inception-v3” 

methods is not pro- vided, and our method 
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achieves an FRR of 20%-. Furthermore, the 

”CNN-GP” method has an EER of 12.83%-, 

the ”GoogLeNet Inception-v1 and Inception-

v3” methods have an EER of 26%-, whereas 

our method achieves an EER of 11%-. Finally, 

the ”CNN- GP” method has an accuracy of 

92%-, the ”GoogLeNet Inception- v1 and 

Inception-v3” methods have an accuracy of 

72%-, and our method achieves an accuracy of 

93%-. Figures (5,6,7 and 8) show the graphs of 

the curves of the results of the proposed study, 

where the curves are loss, val-loss, val-

accuracy, and accuracy with the used dataset. 

Table V. Comparison Results for GPDS-300. 

 

Method 
GPDS-300 

FAR FRR EER 

CNN-GP [43] 9.08 20.60 12.83 

GoogLeNet V1 and V3 [44] – – 26 

Our method 9.1 20 11 

Tables VI and VII compares the results of this 

study with the performance of our method on 

the BHSig260-B and BHSig260- H datasets. 

The ”Multi-Path Siamese (MA-SCN)” [41] 

method 

achieves FAR values of 5.73%- and 9.96%- for 

BHSig260-B and BHSig260-H, respectively. 

The ”Siamese CNN” [?] method has FAR 

values of 14.25%- and 12.29%- for the 

respective datasets. For the ”Multi-scripted 

with CNN” [10] method, the FAR val- ues 

were 1.50%- and 2.31%- for BHSig260-B and 

BHSig260- H, respectively. In contrast, our 

method achieved FAR values of 1.3%- and 

6.8%- for the same dataset. Regarding the 

FRR, the ”Multi-Path Siamese (MA-SCN)” 

method achieved rates of 4.86%- and 5.85%- 

for BHSig260-B and BHSig260-H, respec- 

tively. The ”Sia-mese CNN” method has FRR 

values of 6.41%- and 9.6%- for the respective 

datasets. The ”Multi-scripted with CNN” 

method achieves FRR values of 3.14%- and 

6.65%-. In contrast, our method achieved FRR 

values of 2.1%- and 4.7%- for BHSig260-B 

and BHSig260-H, respectively. For the EER 

met- ric, the ”Multi-Path Siamese (MA-SCN)” 

method achieved rates of 8.18%- and 5.32%- 

for BHSig260-B and BHSig260-H, respec- 

tively. The ”Sia-mese CNN” method does not 

provide a spe- cific EER value, and the ”Multi-

scripted with CNN” method lacks this 

information. In comparison, the proposed 

method achieved EER values of 1.7%- and 

5.2%- for the respective datasets. In terms of 

accuracy, the ”Multi-Path Siamese (MA-

SCN)” method achieved accuracy rates of 

94.99%- for BHSig260-B and 92%- for 

BHSig260-H. The ”Siamese CNN” method 

achieves accuracy rates of 90.64%- and 

88.98%- for the respective datasets. The 

”Multi-scripted with CNN” method achieves 

accuracy rates of 95%- and 90%-. Our method 

outperformed the other methods, achieving the 

highest accuracy rates of 95.82%- for 

BHSig260-B and 92.26%- for BHSig260-H. 
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Table VI. Comparison Results for BHSig260-B 

 

Method 
BHSig260-B 

FAR FRR EER 

Multi-Path Siamese (MA-SCN) [41] 5.73 4.86 8.18 

Siamese CNN [42] 14.25 6.41 – 

Multi-scripted with CNN [10] 1.50 3.14 – 

Our method 1.3 2.1 1.7 

Table VII. Comparison Results for BHSig260-H 

 

Method 
BHSig260-H 

FAR FRR EER 

Multi-Path Siamese (MA-SCN) [41] 9.96 5.85 5.32 

Siamese CNN [42] 12.29 9.6 – 

Multi-scripted with CNN [10] 2.31 6.65 – 

Our method 6.8 4.7 5.2 

 

Fig. 5. The Resulting CEDAR Dataset 

 

Fig. 6. The Resulting BHSig260-H. 
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Fig. 7. The Resulting BHSig260-B. 

VI. CONCLUSION 

This study highlights the significance of the signature verifica- tion process in various applications, 

such as financial operations, 
 

 
 

Fig. 8. The Resulting GPDS-300. 

electronic document signing, and identity 

verification in computer systems. Compared 

with other biological methods, signature ver- 

ification offers community acceptance and is 

less invasive. Deep learning (DL) and 

Convolutional Neural Networks (CNNs) have 

significantly contributed to the advancement 

of signature verifi- cation systems by 

effectively extracting features from signatures. 

However, the optimization of hyperparameters 

for CNN models remains a challenging task in 

the design of highly efficient models with 

accurate results. Currently, CNN models are 

predominantly manually designed, which can 

be time-consuming and may not yield the best 

possible outcomes. To address this challenge, 

the proposed method utilizes a genetic 

algorithm to develop a pop- ulation of CNN 

models and identify the most suitable architec- 

ture for offline signature verification. The 

model was evaluated using multiple datasets 

including BHSig260-Bengali, BHSig260- 

Hindiin, GPDS, and CEDAR. The results of the 

proposed approach demonstrated its 

effectiveness, with the highest discrimination 

rates achieved. The False Rejection Rate 

(FRR) was 2.5%-, False Acceptance Rate 

(FAR) was 3.2%-, Equal Error Rate (EER) was 

2.35%-, and accuracy rate was 97.73%-. In 

summary, the utiliza- tion of a genetic 

algorithm for optimizing the architecture of 

CNN models in signature verification leads to 

improved discrimination rates and accuracy. 

This study contributes to the development of 

highly efficient offline signature verification 

systems with poten- tial applications in various 

domains. Future work could focus on further 

enhancing the proposed method by exploring 

additional techniques for hyperparameter 

optimization. In addition, inves- tigating the 
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generalizability of the developed model by 

testing it on larger and more diverse datasets 

would be valuable. Moreover, considering the 

robustness of the model against various types 

of signature forgeries and exploring methods to 

mitigate potential vul- nerabilities is an 

important direction for future research. 

Finally, incorporating real-time processing 

capabilities and evaluating the model’s 

performance on streaming data can be explored 

to enhance its practical applicability in real-

world scenarios. 

REFERENCES 

[1] A. K. Jain, A. Ross, and K. 

Nandakumar, Introduction to Biometrics. 

Springer, 2016. 

 

[2] D. Impedovo and G. Pirlo, “Automatic 

signature verification: the state of the art,” 

IEEE Transactions on Systems, Man, and 

Cybernetics, Part C (Applications and 

Reviews), vol. 38, 

no. 5, pp. 609–635, 2008. 

[3] C.-L. Liu and Y. H. Yin, “Offline 

handwritten signature verification–literature 

review,” Pattern Recognition, vol. 40, no. 8, 

pp. 2293–2307, 2007. 

[4] M. A. Ferrer and C. M. Travieso, 

“Offline signature veri- fication: An overview 

and some recent advances,” Pattern 

Recognition Letters, vol. 34, no. 3, pp. 249–

256, 2013. 

[5] B. M. Al-Maqaleh and A. M. Musleh, 

“An efficient offline signature verification 

system using local features,” Interna- tional 

Journal of Computer Applications, vol. 131, 

no. 10, 

pp. 39–44, 2015. 

[6] L. G. Hafemann, R. Sabourin, and L. S. 

Oliveira, “Of- fline handwritten signature 

verification—literature review,” in Seventh 

International Conference on Image 

Processing Theory, Tools and Applications 

(IPTA), IEEE, Nov. 1-8 2017. 

[7] R. Verma and D. Rao, “Offline signature 

verification and identification using angle 

feature and pixel density feature and both 

method together,” International Journal of 

Soft Computing and Engineering, vol. 2, no. 

4, pp. 740–746, 

2013. 

[8] L. V. Batista, D. Rivard, R. Sabourin, and 

P. Maupin, “State of the art in off-line signature 

verification,” in Iberoamerican Congress on 

Pattern Recognition, pp. 227–234, Springer, 

2009. 

[9] Y. Muhtar, W. Kang, A. Rexit, and K. 

Ubul, “A survey of offline handwritten 

signature verification based on deep learning,” 

in 2022 3rd International Conference on 

Pattern Recognition and Machine Learning in 

PRML, pp. 391–397, IEEE, July 2022. 

[10] T. Longjam, D. R. Kisku, and P. Gupta, 

“Multi-scripted writer independent off-line 

signature verification using convolu- tional 

neural network,” Multimedia Tools and 

Applications, 

pp. 1–18, Aug. 2022. 

[11] S. Pal, A. Alaei, U. Pal, and M. 

Blumenstein, “Performance of an off-line 

signature verification method based on texture 

features on a large indicscript signature dataset,” 

in 12th IAPR Workshop on Document Analysis 

Systems, pp. 72–77, IEEE, April 2016. 

[12] A. Foroozandeh, A. Hemmat, and H. 

Rabbani, “Offline hand- written signature 

verification and recognition based on deep 

transfer learning,” in International Conference 

on Machine Vision and Image Processing 

(MVIP), pp. 1–7, IEEE, Feb. 2020. 

[13] N. Sharma, S. Gupta, P. Mehta, X. 

Cheng, A. Shankar, 

P. Singh, and S. R. Nayak, “Offline signature 

verification using deep neural network with 

application to computer vi- sion,” Journal of 

Electronic Imaging, vol. 31, pp. 041210– 1–

041210–10, Jul. 2022. 

[14] Y. LeCun, Y. Bengio, and G. Hinton, 

“Deep learning,” Na- ture, vol. 521, pp. 436–



100                                  Abdoulwase M. Obaid Al-Azzani
, 

and Abdulbaset M. Qaid Musleh  

 

444, May 2015. 

[15] C. Szegedy, W. Liu, Y. Jia, P. 

Sermanet, S. Reed, 

D. Anguelov, and A. Rabinovich, “Going 

deeper with convo- lutions,” in Proceedings of 

the IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 1–9, 2015. 

[16] K. He, X. Zhang, S. Ren, and J. Sun, 

“Deep residual learning for image 

recognition,” in Proceedings of the IEEE 

Confer- ence on Computer Vision and Pattern 

Recognition, pp. 770– 

778, 2016. 

[17] E. Parcham, M. Ilbeygi, and M. Amini, 

“Cbcapsnet: A novel writer-independent 

offline signature verification model us- ing a 

cnn-based architecture and capsule neural 

networks,” Expert Systems with Applications, 

p. 115649, Dec. 2021. 

[18] G. Huang, Z. Liu, K. Q. Weinberger, and 

L. van der Maaten, “Densely connected 

convolutional networks,” in Proceedings of the 

2017 IEEE Conference on Computer Vision and 

Pattern Recognition, (Honolulu, HI, USA), pp. 

2261–2269, 2017. 

[19] A. Krizhevsky, I. Sutskever, and G. E. 

Hinton, “Imagenet classification with deep 

convolutional neural networks,” 

Communications of the ACM, vol. 60, no. 6, pp. 

84–90, 2017. 

[20] C. Clark and A. Storkey, “Training deep 

convolutional neural networks to play go,” in 

International Conference on Machine Learning, 

pp. 1766–1774, PMLR, Jun. 2015. 

[21] N. Purohit, S. Purohit, and C. S. Satsangi, 

“Offline handwrit- ten signature verification 

using template matching and clus- tering 

technique,” International Journal of Computer 

Science and Mobile Computing, vol. 2, pp. 

295–301, Apr. 2014. 

[22] K. Simonyan and A. Zisserman, “Very 

deep convolutional networks for large-scale 

image recognition,” arXiv preprint, 

pp. 1409–1556, Sep. 2014. 

[23] F. Johnson, A. Valderrama, C. Valle, B. 

Crawford, R. Soto, and R. Ñ anculef, 
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 التحقق من التوقيع دون اتصال بالإنترنت باستخدام التعلم العميق
  والخوارزمية الجينية

 
  2 عبدالباسط محمد قايد مصلح، 1 محمد عبيد العزاني عبدالواسع

 
 كلية الحاسبات وتقنية المعلومات الحاسبات،قسم علوم  1

 يمن، الصنعاءجامعة الملك  
Aledresi200@yehoo.com 

 
ليات ، بما في ذلك العمإن عملية التحقق من التوقيعات لها تطبيقات واسعة النطاق في أنظمة الكمبيوتر .مستخلص

المالية، التوقيع الإلكتروني للمستندات والتحقق من هوية المستخدم. يتمتع هذا النهج بميزة قبول المجتمع ويقدم بديلاً 

أقل تدخلاً من طرق المصادقة البيولوجية الأخرى. التعلم العميق والعصبية التلافيفية برزت الشبكات كأدوات بارزة 

زات الميالتوقيع مما أدى إلى تعزيز دقة وفعالية هذه الأنظمة بشكل كبير من خلال استخلاص  في مجال لتحقق من

 التمييزية بشكل فعال من صور التوقيع. ومع ذلك، يظل تحسين المعلمات الفائقة في نماذج ث مهمة صعبة، لأنه يؤثر

ي يمكن ل كبير على التعديلات اليدوية، والتبشكل مباشر على كفاءة النماذج ودقتها. وحالياً، يعتمد تصميم بنيات بشك

أن تستغرق وقتاً طويلاً ربما أيضاً لا تسفر عن النتائج المثلى. ولمعالجة هذه المشكلة، تركز الطريقة المقترحة على 

 استخدام خوارزمية جينية للتطور مجموعة من نماذج، مما يتيح الاكتشاف التلقائي للبنية الأكثر ملاءمة للتوقيع دون

اتصال بالأنترنت تحقق. من خلال الاستفادة من قدرات التحسين للخوارزمية الجينية، يهدف النهج المقترح إلى تحسين 

الأداء العام وفعالية نموذج التحقق من التوقيع. تم تقييم فعالية الطريقة المقترحة باستخدام مجموعة بيانات متعددة، من 

ومعدل قبول كاذب  ٢٠٥بنسبة  كاذبت تمييز ملحوظة مع معدل رفض خلال اختبارات صارمة، حقق النهج معدلا

  ٠٠٠٢٠٠٠، ومعدل ودقة قدرة  ٢٢٠٥ مساوٍ بنسبةومعدل خطأ  ،٥٠٢بنسبة 

 الجينية.والخوارزمية  العميق،، التعلم الاتصالمن التوقيع دون  ـــ التحققالمفتاحية تالكلما

 


