
JKAU: Comp. IT. Sci., Vol. 13 No. 1, pp: 86 – 102 (2024 A.D.)

DOI: 10.4197/Comp.13-1.5

86

Offline Signature Verification Using Deep learning and

Genetic Algorithm

Abdoulwase M. Obaid Al-Azzani1 and Abdulbaset M. Qaid Musleh1

1Department of Computer Science and Information Technology, Sana’a University

Sana’a, Yemen amalezzani71@gmail.com, aledresi200@yahoo.com

Abstract. the process of verifying signatures has wide-ranging applications in computer systems, including

financial opera- tions, electronic document signing, and user identity verification. This approach has the

advantage of community acceptance and presents a less intrusive alternative than other biological

authentication methods. Deep learning (DL) and Convolutional Neural Networks (CNNs) have emerged as

prominent tools in the field of signature verification, significantly enhancing the accuracy and effectiveness

of these systems by effectively extracting discriminative features from signature images. However,

optimizing the hyperparameters in CNN models remains a challenging task, as it directly affects the

efficiency and accuracy of the models. Currently, the design of CNN architectures relies heavily on manual

adjustments, which can be time consuming and may not yield optimal results. To address this issue, the

proposed method focuses on employing a genetic algorithm to evolve a population of CNN models, thereby

enabling the automatic discovery of the most suitable architecture for offline signature verification. By

leveraging the optimization capabilities of the genetic algorithm, the proposed approach aims to improve

the overall performance and effectiveness of the signature verification model. The effectiveness of the

proposed method was evaluated using multiple datasets, including BHSig260-Bengali, BHSig260-Hindiin,

GPDS, and CEDAR. Through rigorous testing, the approach achieved remarkable discrimination rates with

a False Rejection Rate (FRR) of 2.5%-, False Acceptance Rate (FAR) of 3.2%-, Equal Error Rate (EER) of

2.35%-, and accuracy rate of 97.73%-.

Keywords—Offline Signature Verification, Convolutional Neural Network, Deep Learning, and Genetic

Algorithm.

I. INTRODUCTION

relevance [5]. Given the continuous

authorization of financial doc- uments and

business transactions through signatures, the

primary goal of handwriting signature

verification systems is to differenti-

Biometric systems have become essential for

personal authen- tication by employing

behavioral or physiological characteristics. In

the realm of biometrics, handwritten sig-

natures have emerged as widely used tools for

secure verification [1, 2]. Signature verifi-

cation has been extensively researched, with a

distinction between two main categories:

online and offline [3]. Online signature

verification focuses on capturing dynamic

information during the writing process,

whereas offline signature verification deals

with static signature images, posing greater

challenges and typically yielding lower

accuracy compared to its online counterpart

[4]. However, offline signature verification

offers distinct advantages, despite its lower

accuracy. It does not require specialized in-

put devices, making it more accessible and

applicable to a wider range of scenarios.

Moreover, offline signature verification spans

various domains, thereby expanding its

potential applications and ate between genuine

signatures created by authorized writers and

mailto:amalezzani71@gmail.com
mailto:aledresi200@yahoo.com

Offline Signature Verification Using Deep learning and Genetic Algorithm 87

forged signatures produced by fraudulent

individuals [6]. Forgery in the signature

verification field can be categorized into three

types [7]. Unskilled forgery occurs when a

person forges another indi- vidual’s signature

without possessing knowledge of that person.

Random forgery involves a person who knows

only the signer’s name without having

previously seen its genuine signature. On the

other hand, skilled forgery is performed by an

individual who possesses knowledge of both

the signer’s name and the shape of their

genuine signature. These distinctions highlight

the complex- ity and importance of offline

signature verification as they play a critical

role in safeguarding against fraudulent

activities. Further

advancements in this field have the potential to

enhance security measures and improve the

accuracy of signature-verification systems [8].

Handwritten Signature Verification systems

employ two classifications of learning: writer-

independent (WI) and writer- dependent (WD)

[9, 10]. In the Writer-Independent state,

learning is performed by all signatures in the

database collectively, whereas in the Writer-

Dependent state, learning is conducted

independently for individual signatures. The

WI method has gained popularity because it

simplifies the addition of new individuals to the

system, as the classification is based on a

single category for all per-sons [11, 12]. In

recent years, numerous automated systems

have been developed to verify the authenticity

of handwritten signatures us- ing various

algorithms and methods. Deep learning,

specifically Convolutional Neural Net-works

(CNNs), has emerged as a dom- inant approach

owing to its effectiveness in image

classification and processing [13, 14]. CNNs,

such as VGGNet, GoogleNet [15], ResNet

[16], CapsNet [17], and DenseNet [18] have

demon- strated significant improvements in

efficiency and performance in real-world

applications [19, 20]. The performance of

CNNs re- lies heavily on their architecture [21,

22]. Experts in this field have designed

different structures and versions to address

specific classification problems. However, it is

challenging to find a CNN model that can

effectively solve all classification problems.

The manual design of CNN architectures

involves iterative attempts to find suitable

parameters that yield the best results, which

often requires a substantial amount of time

[23]. Figures (1,2, and 3) show some samples

from the dataset used.

Fig. 1. Sample of Signatures in BHSig260-Bengali Dataset.

Fig. 2. Sample of Signatures GPDS-300 Dataset.

Fig. 3. Sample Signatures from the CEDAR Dataset.

88 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

To address this challenge, this study proposes

a method that utilizes a genetic algorithm to

optimize the hyperparameters of the CNN

architecture for offline signature verification.

The genetic algorithm assists in determining

the optimal combination of hy- perparameters,

significantly reducing the time required for

manual design. By leveraging the genetic

algorithm, the proposed method aims to

enhance the performance and efficiency of the

CNN model for offline signature verification,

providing more accurate and re- liable results.

II. LITERATURE REVIEW

In the field of artificial intelligence, particularly

deep learning, Convolutional Neural Networks

(CNNs) have been widely used in various

applications, including computer vision,

pattern recog- nition, and natural language

processing [24]. CNNs consist of several key

components, including a Convolutional Layer,

Acti- vating function, pool-ing layer, and fully

connected layer. The Convolutional Layer

applies filters (kernels) to extract features or

patterns from the input image matrix, and

multiple filters can be used to capture the

different features. The Pooling Layer reduces

the size of the matrices by applying functions,

such as Max or Average pooling. The Fully

connected layer is a multilayer percep- tron,

where neurons are connected to all the nodes of

the previous layer and are responsible for the

final classification. Different ap- proaches

have been proposed for offline signature

verification. A method known as the Siamese

network was introduced in [25]. It utilizes

writer-independent (WI) feature learning and

measures the similarity or dissimilarity

between Siamese network outputs using the

Euclidean distance. Another study [26]

employed a Siamese Neural Network for

signature verification, training, and evalua-

tion of two similar neural networks on the

same data. The use of the Siamese network

architecture helped reduce the required

training data volume and resulted in a 13 %-

increase in system efficiency. Genetic

algorithms have also been applied to optimize

CNN architectures. For example, in a study by

[27], two models for predicting the strength of

adhesively bonded joints were de- signed using

a CNN. The architecture of one model was

manually developed, whereas the architecture

of the other model was opti- mized using a

genetic algorithm. The improved model with

genetic algorithm optimization demonstrated

better results. In image clas- sification tasks,

genetic algorithms have been employed to

optimize CNN architectures using datasets

such as CIFAR10, MNIST, and Cal-tech256

[23]. By automatically adjusting the model’s

param- eters, the genetic algorithm improved

the accuracy compared to the other tested

models. In [28], the authors presented a hybrid

ap- proach for extracting features from signature

images. We utilized a Convolutional Neural

Network (CNN) and Histogram of Oriented

Gradients (HOG) techniques, followed by a

feature-selection algo- rithm (Decision Trees)

to identify important features. The CNN and

HOG methods were combined. We evaluated

the effective- ness of our hybrid approach using

three classifiers: long short-term memory,

support vector machine, and K-nearest

Neighbor. The experimental results

demonstrated that the proposed model per-

formed satisfactorily in terms of efficiency and

predictive ability. It achieved accuracy rates of

95.4 %-, 95.2 %-, and 92.7 %- with the UTSig

dataset and 93.7 %-, 94.1 %-, and 91.3 %- with

the CEDAR dataset. Another study [29]

applied a genetic algorithm to select

parameters such as the number of filters, filter

size, and number of layers added to the

trainable layers of a CNN transfer model. The

proposed method achieved an accuracy of 97

%- in classify- ing cat and dog datasets over 15

generations. In the domain of finger-vein

Offline Signature Verification Using Deep learning and Genetic Algorithm 89

recognition, a system called a Genetic

Algorithm with a Convolutional Neural

Network (GA-CNN) was developed [30].

The GA-CNN system utilizes a genetic

algorithm to initialize the training phase of the

CNN, resulting in improved accuracy, sensi-

tivity, and precision. Genetic algorithms have

also been used for feature selection in signature

verifications. In one study [31], a genetic

algorithm was employed to select the optimal

set of partial curves and features encoded into

chromosomes for verification. In addition,

genetic algorithms have been applied to weigh

individual feature components in offline

signature verification systems[32]. In [33],

four different pattern representation schemes

using genetic algorithms were used to

determine the weights of feature-based

classifiers, leading to increased verification

accuracy. Further- more, a model was

developed for offline signature verification

using CNNs (VGG16, VGG19, and ResNet50)

with additional parameters, and trained and

tested on the SigComp2009 dataset. The

VGG16 model demonstrated a high efficiency

of 97 %- com- pared with the other models.

In [34], a method was proposed to investigate

the feasibility of employing Genetic

Algorithms to automatically design CNN

architectures. The Genetic Algorithm

generates CNN architectures, which are then

trained from the be- ginning using a Gradient-

Descent Algorithm. The performance of the

evolved CNN architecture was evaluated at

each step of the evolutionary process, using a

validation set. This algorithm does not require

any preprocessing or post-processing of data

before or after executing the Genetic

Algorithm. In summary, this study focuses on

developing an offline signature verification

system us- ing Convolutional Neural Networks

(CNNs) in combination with a genetic

algorithm. A genetic algorithm was employed

to search for the best model architecture

hyperparameters and optimize the

performance and accuracy of the system.

III. METHODOLOGY

Offline signature verification is a complex

pattern-recognition problem that involves

recognizing and verifying genuine handwrit-

ten signatures while detecting forgery

attempts. To address this challenge, a

comprehensive model for offline signature

verifica- tion needs to be developed.

Convolutional Neural Networks are

particularly suitable architectures for signature

verification [35]. The proposed model consists

of the following stages. The first stage was the

preprocessing stage, in which the signature

image was prepared for further analysis. This

typically involves tasks such as noise removal,

image enhancement, and normalization to

ensure consistent input for the subsequent

stages. The second crucial stage is GA-based

hyperparameter selection. Hyperpa- rameters

are essential variables that determine the

architecture and behavior of the Convolutional

Neural Network (CNN). How- ever, manually

finding optimal hyperparameters is a

challenging and time-consuming task. By

employing a genetic algorithm, the model can

automatically search for and select the best

combination of hyperparameters, leading to

improved performance and accu- racy. The

third stage involves the CNN itself, which is

responsible for the feature extraction, training,

and testing. CNNs are powerful deep-learning

architectures that excel in the extraction of

meaning- ful features from images. They

consist of multiple convolutional

and pooling layers that learn the hierarchical

representations of signature data. The extracted

features are then utilized for training the model

on a labeled dataset and for subsequent testing

to evalu- ate the model’s performance in

signature verification. Each stage within the

model comprises multiple steps, such as data

prepro- cessing techniques, genetic algorithm

initialization and evolution, CNN architecture

design, training data preparation, model train-

90 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

ing, and testing. These steps work in

conjunction to create an effective and robust

offline signature verification system. Figure 4

visually represents the main stages and

associated steps within each stage of the

proposed model, providing a clear overview of

the workflow involved in the offline signature

verification.

Fig. 4. Proposed model architectures

A Signature Images Preprocessing

Before starting feature extraction, essential

processes must be applied to the image

signature. These operations include the fol-

lowing.

• The color images were converted into

grayscale images.

• Each image was resized to 100 × 100

pixels.

• The image points were read and stored in

an image matrix.

B The Feature Extraction with CNN

The primary obstacle in addressing the issue of

hand-written signature verification lies in

identifying the distinguishing features that

allow the system to differentiate between

authentic and forged signatures [36].

Convolutional Neural Networks (CNNs) are a

type of deep learning model primarily used for

image and video analy- sis tasks[37]. They are

designed to automatically learn and extract

meaningful features from input data, making

them well-suited for tasks such as image

classification, object detection, and image seg-

mentation. CNNs were inspired by the

organization of the visual cortex in the human

brain, which contains specialized neurons that

respond to specific receptive fields. Similarly,

Offline Signature Verification Using Deep learning and Genetic Algorithm 91

CNNs consist of interconnected layers of

artificial neurons that learn to recognize

patterns and spatial hierarchies in the data. The

key components of a CNN are convolutional,

pooling, and fully connected layers. Here’s

how they work: Convolutional Layers: These

layers per- form convolution operations on

input data. A convolution involves sliding a

small window, called a filter or kernel, over the

input and computing dot products between the

filter and the local patches of the input. This

process captures the local patterns and

features. Convolutional layers can have

multiple filters to learn different fea- tures

simultaneously. Pooling Layers: Pooling

layers reduce the spatial dimensions of the data,

helping to make the learned features more

robust and invariant to small translations and

distortions. The most common pooling

operation is max-pooling, which selects the

maximum value within each local region of the

input. Fully Con- nected Layers: After several

convolutional and pooling layers, the output is

flattened and connected to the fully connected

layers. These layers resemble traditional neural

networks, in which each neuron is connected

to every neuron in the previous layer. Fully

connected layers learn global patterns and

make predictions based on the extracted

features. During the training process, CNNs

learn to optimize their internal parameters

(weights and biases) by min- imizing a chosen

loss function. This is usually performed using

gradient-based optimization algorithms, such

as stochastic gradi- ent descent (SGD) or its

variants. The backpropagation algorithm

computes the weight loss gradients, allowing

for efficient parame- ter updates. The proposed

model function creates a convolutional neural

network (CNN) model based on the parameters

provided by the genetic algorithm and trains it

using the given training data. Here, is a

breakdown of the steps performed by function:

1) We defined an early stopping callback to

monitor the valida- tion loss and stop training if

the loss did not improve after two epochs.

2) A 2D convolutional layer is added to the

model with a spec- ified number of filters,

kernel size, and activation function. The input

shape was set to the provided input shape.

3) Another 2D convolutional layer is added to

the model with a specified number of filters,

kernel size, padding, and activa- tion function.

4) A max pooling layer is added to the model

with a specified pool size.

5) Steps 2 and 3 are repeated for two more

convolutional layers.

6) Add a dropout layer with a specified

dropout rate.

7) The output is flattened from the previous

layers.

8) Add a dense (fully connected) layer to the

model with a spec- ified number of units and

activation function ‘ReLU’ [38].

9) Add another dropout layer with a specified

drop-out rate.

10) A dense output is added to the layer with the

activation func- tion ‘Softmax’ [39] and the

specified number of classes and activation

function.

11) Return the trained model using the training

dataset.

C The Genetic Algorithm

AG is used to determine the best combination of

hyperparame- ters for the convolutional neural

network model, which can achieve high

accuracy in classifying signatures. It begins by

randomly ini- tializing a population of network

configurations, where each con- figuration

representation of genes is a set of

hyperparameters for the convolutional neural

network. The fitness of each network was

evaluated by training and testing the

corresponding convolutional neural network

model on the signature data. The genetic algo-

rithm then applies selection, crossover, and

mutation operations to the population.

Selection favors networks with higher fitness,

allowing them to pass their genetic material

(hyperparameters) to the next generation.

92 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

Crossover combines the genetic material of

two-parent networks to create new child

networks, potentially inheriting beneficial

hyperparameter combinations. Mutation in-

troduces random changes to the

hyperparameters of the networks, promoting

the exploration of the search space. This

process of evaluating the fitness, selecting the

best networks, generating new networks

through crossover, and introducing mutations is

repeated for multiple generations. The

algorithm aims to iteratively improve

the population by evolving networks with

improved performance.

Table I. Random Generated Initial Population.

Hyperparame teRr ange

Epoch Random (2, 25)

Filter Size Choice (16, 32, 64, 96)

Kernel Size Choice [(3x3), (5x5)]

Unit Choice (128, 256, 512)

Dropout Choice (0, 0.25, 0.50)

a) Initialization The constructor initializes

the hyperparame- ters randomly, including the

number of epochs, filter size, kernel size,

dropout rate, activation function, loss

function, optimizer, and accuracy. This step

returns a dictionary that contains the current

values of the hyperparameters. A CNN model

was built based on the given hyperparameters.

It uses a combination of convolutional,

pooling, dropout, and dense layers to construct

the model. The model was compiled us- ing a

specified optimizer, loss function, and metrics.

This method initializes the attributes of an

instance with random or predefined values, as

listed in Table I. The attributes used included

the following:

1) epoch: An integer attribute is randomly

initialized be- tween 1 and 25.

2) filter1 and filter2: Integer attributes were

randomly cho- sen from the values 64, 32, and

16.

3) units1: An integer attribute is randomly

chosen from values 128, 256, and 512.

4) kernel1 and kernel2: Tuple attributes

randomly chosen from the values (3, 3) and (5,

5).

5) dropout1 and dropout2: Float attributes

randomly cho- sen from the values 0.25 and

0.5.

b) Fitness Function The fitness function

equation represents the fitness of each network

in the population. It trains and tests the

Convolutional Neural Network model with the

given hyperparameters, and calculates its

accuracy. The accuracy was then stored. In

addition, the function prints the accu- racy and

classification reports for each network. The

fitness function evaluates the fitness of each

network in the network list by training and

evaluating a convolutional neural network

model for each network parameter

configuration. This is an explanation of the

steps performed by the function.

1) Selecting for each one the population

dictionary from the list.

2) For convenience, we take the parameter

values from the population dictionary and

assign them to the corre- sponding variables.

3) We attempted to create and train a CNN

model using the CNN model function with the

extracted parameter values and input data.

4) The performance of the trained model is

evaluated using the evaluation method on the

test data, and the accuracy score is stored in the

accuracy attribute of the network.

5) The accuracy of the model was obtained as a

percentage.

6) Generate predictions using the trained

model and obtain classification reports

comparing predicted labels with true labels.

Offline Signature Verification Using Deep learning and Genetic Algorithm 93

7) The updated list of networks is returned,

including the accuracy values for each

network.

c) Selection The selection function performs

selection by sort- ing the population based on

the accuracy of each network and retaining the

top individuals. The number of individuals

selected was equal to the population size.

1) The population list is sorted in descending

order based on the individual accuracy

attributes.

2) The top individuals are selected from the

sorted popu- lation based on a specified

percentage or number.

3) The selected population is then returned.

d) Crossover The crossover function is

responsible for perform- ing a crossover by

randomly selecting two parent networks from

the population and creating two child

networks. The cross-over process follows

these steps for each of the two parents from the

population, using a selection process:

1) The total number of attributes

(hyperparameters) in the parents was divided

into half.

2) Take the first half of the attributes from the

first parent and assign them to the

corresponding attributes of the second child.

3) Take the first half of the attributes from the

second parent and assign them to the

corresponding attributes of the first child.

4) Combine the offspring list, which includes

two newly created child networks, with the

current population, forming a new population.

5) Return to the new population.

This process enables the exchange of genetic

information be- tween parent networks,

allowing the child networks to inherit certain

hyperparameters from their parents. By

combining attributes from different parents,

crossover promotes the ex- ploration and

exploitation of potential solutions within a pop-

ulation.

e) Mutation The mutation function is

responsible for introduc- ing random mutations

to the hyperparameters of the networks within

the population. The mutation process follows

these steps for each newly generated child

from the previous pro- cess.

1) A random uniform function is used to

generate a random number between 0 and 1.

2) The random “ function” was used to

generate a random integer within the specified

range.

3) A random module was imported at the

beginning of the code to access these

functions.

4) The mutation process remains the same,

where the “epoch” and “units” attributes of

each individual are modified if the generated

random number is less than or equal to 0.1.

5) Finally, the modified population was

returned.

D Training and Testing Stage

In the training and testing stages of the

signature verification process, our objective

was to develop an efficient model for of- fline

signature verification using a genetic

algorithm and evaluate its performance on

multiple datasets. Table II shows lists of the

datasets used in the proposed model. Our

study employed Con-

94 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

Table II. Dataset Used in the Proposed System.

Type GPDS-300 CEDAR Bengali Hindi

Signers 300 100 100 160

Genuine 24 24 24 24

Forged 30 24 30 30

Training 10200 1540 3400 5440

Testing 6000 1100 2000 3200

volutional Neural Networks (CNNs), a deep

learning technique known for its effectiveness

in feature extraction for signature ver-

ification. However, manually designing CNN

models often leads to suboptimal results

because of the challenge of determining op-

timal architecture and hyperparameters. To

address this challenge, we propose the use of a

genetic algorithm, inspired by natural

selection to evolve a population of CNN

models. The genetic algorithm explores

different combinations of architectural con-

figurations, such as the number and size of

convolutional layers, pooling layers, fully

connected layers, activation functions, and

regularization techniques. The fitness of each

CNN model was evaluated using a fitness

function that considers metrics such as

accuracy, loss, and convergence speed. The

algorithm selects the most promising models

based on their fitness scores and applies

genetic operators such as crossover and

mutation to create a new generation of models.

This evolutionary process continues, gradu-

ally improving the fitness of the models until

the genetic algorithm identifies the CNN

architecture with the best performance on the

training dataset. Once the optimal architecture

is determined, we proceed to the testing phase,

where we evaluate the selected model on

multiple datasets, including BHSig260-

Bengali, BHSig260- Hindi, GPDS[40], and

CEDAR, to ensure the robustness and gen-

eralization of our approach.

IV. RESULTS

During testing, we computed various

performance metrics, such as the False

Rejection Rate (FRR), False Acceptance Rate

(FAR), Equal Error Rate (EER), and overall

accuracy, to assess the effectiveness of our

method. Our experimental results demon-

strated impressive discrimination rates, with

an FRR of 2.5%-, FAR of 3.2%-, EER of

2.35%-, and accuracy rate of 97.73%-. These

findings highlight the effectiveness of our GA-

based ap- proach in designing highly efficient

and accurate offline signature verification

models. The results are summarized in Table

III, which presents the parameters and

accuracy during the testing stage. Our study

underscores the significance of leveraging

genetic algorithms to optimize CNN

architectures in signature verification systems.

The superior performance of our proposed

method has the poten- tial for various real-

world applications that require reliable and

non-intrusive signature verification.

V. DISCUSSION

Each dataset was subdivided into two parts: a

training set and testing. The performance of

the proposed system was measured using three

global scales which are as follows: Accuracy

is the ratio of the number of correctly

categorized signatures to the total number of

complete signatures. These are the False

Acceptance Rate (FAR) and False Rejection

Rate (FRR), which are the pres- ence of the

forgeries signatures that are incorrectly

Offline Signature Verification Using Deep learning and Genetic Algorithm 95

classified. An equal Error Rate (EER) is

applied to evaluate the equilibrium point where

the FRR equals the FAR. A lower EER indicates

a better per- formance for the model. The

results obtained from the proposed method of

constructing the CNN model using the genetic

algorithm were compared with those of other

methods using hand-built CNN models. The

results were compared with those of other

studies. Table IV. presents a comparison of

the performance of different methods with our

method on the CEDAR dataset in terms of

FAR, FRR, EER, and accuracy. ”Our method”

outperforms the other methods in terms of

FAR, FRR, EER, and accuracy, indicating its

superior performance on the CEDAR dataset.

The ”Surround- edness Features” meth-od

[11] achieves a False Acceptance Rate (FAR)

of 8.33%-, False Rejection Rate (FRR) of

8.33%-, Equal Error Rate (EER) of 8.33%-,

and accuracy of 91.67%-. On the other hand,

the ”Multi-Path Siamese (MA-SCN)” method

[41] yields an FRR of 18.35%-, FAR of

19.21%-, EER of 18.92%-, and accuracy of

80.75%-. Additionally, the ”Siamese CNN”

method

[42] achieves a FAR of 6.78%-, FRR of

4.20%-, and accuracy of 95.66%-. In

comparison, our proposed method

outperformed these approaches with a FAR of

2.5%-, FRR of 2.2%-, EER of 2.35%-, and

accuracy of 97.73%-.
Table III. The Parameter Setting of The

Proposed System.

Parameter
Dataset Name

GPDS-300 CEDAR BHSig260-B BHSig260-H

Max Epochs 20 21 12 14

Parameters 2,402,731 2,545,911 2,426,120 1,241,250

Layer 1 Conv2D (32, 3x3) (32, 3x3) (64, 3x3) (32, 3x3)

Layer 2 & MaxPool(2, 2) Conv2D (32, 3x3) Conv2D (64, 3x3) Conv2D (32, 3x3) Conv2D (32, 3x3)

Layer 3 & MaxPool(2, 2) Conv2D (32, 3x3) Conv2D (32, 3x3) Conv2D (64, 3x3) Conv2D (32, 3x3)

Layer 4 & MaxPool(2, 2) Conv2D (32, 3x3) Conv2D (64, 3x3) Conv2D (32, 3x3) Conv2D (32, 3x3)

Dropout 0.50 0.25 0.25 0.50

Flatten 512 264 512 256

Accuracy 0.93 0.977 0.958 0.922

Table IV. Comparison Results for CEDAR Dataset.

Method
CEDAR

FAR FRR EER

Surroundedness Features [11] 8.33 8.33 8.33

Multi-Path (MA-SCN) [41] 19.21 18.35 18.92

Siamese CNN [42] 6.78 4.20 –

Our method 2.5 2.2 2.35

Table V provides a comparison of different

methods, includ- ing ”CNN-GP” [43],

”GoogLeNet Inception-v1 and Inception-v3”

[44], and our method, on the GPDS-300

dataset in terms of FAR, FRR, EER, and

accuracy. The ”CNN-GP” method achieves a

FAR of 9.08%-, while the specific FAR value

for the ”GoogLeNet Inception-v1 and

Inception-v3” methods is not provided. In

con- trast, our method achieved a FAR of

9.1%-. The ”CNN-GP” method has an FRR of

20.60%-, the specific FRR value for the

”GoogLeNet Inception-v1 and Inception-v3”

methods is not pro- vided, and our method

96 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

achieves an FRR of 20%-. Furthermore, the

”CNN-GP” method has an EER of 12.83%-,

the ”GoogLeNet Inception-v1 and Inception-

v3” methods have an EER of 26%-, whereas

our method achieves an EER of 11%-. Finally,

the ”CNN- GP” method has an accuracy of

92%-, the ”GoogLeNet Inception- v1 and

Inception-v3” methods have an accuracy of

72%-, and our method achieves an accuracy of

93%-. Figures (5,6,7 and 8) show the graphs of

the curves of the results of the proposed study,

where the curves are loss, val-loss, val-

accuracy, and accuracy with the used dataset.

Table V. Comparison Results for GPDS-300.

Method
GPDS-300

FAR FRR EER

CNN-GP [43] 9.08 20.60 12.83

GoogLeNet V1 and V3 [44] – – 26

Our method 9.1 20 11

Tables VI and VII compares the results of this

study with the performance of our method on

the BHSig260-B and BHSig260- H datasets.

The ”Multi-Path Siamese (MA-SCN)” [41]

method

achieves FAR values of 5.73%- and 9.96%- for

BHSig260-B and BHSig260-H, respectively.

The ”Siamese CNN” [?] method has FAR

values of 14.25%- and 12.29%- for the

respective datasets. For the ”Multi-scripted

with CNN” [10] method, the FAR val- ues

were 1.50%- and 2.31%- for BHSig260-B and

BHSig260- H, respectively. In contrast, our

method achieved FAR values of 1.3%- and

6.8%- for the same dataset. Regarding the

FRR, the ”Multi-Path Siamese (MA-SCN)”

method achieved rates of 4.86%- and 5.85%-

for BHSig260-B and BHSig260-H, respec-

tively. The ”Sia-mese CNN” method has FRR

values of 6.41%- and 9.6%- for the respective

datasets. The ”Multi-scripted with CNN”

method achieves FRR values of 3.14%- and

6.65%-. In contrast, our method achieved FRR

values of 2.1%- and 4.7%- for BHSig260-B

and BHSig260-H, respectively. For the EER

met- ric, the ”Multi-Path Siamese (MA-SCN)”

method achieved rates of 8.18%- and 5.32%-

for BHSig260-B and BHSig260-H, respec-

tively. The ”Sia-mese CNN” method does not

provide a spe- cific EER value, and the ”Multi-

scripted with CNN” method lacks this

information. In comparison, the proposed

method achieved EER values of 1.7%- and

5.2%- for the respective datasets. In terms of

accuracy, the ”Multi-Path Siamese (MA-

SCN)” method achieved accuracy rates of

94.99%- for BHSig260-B and 92%- for

BHSig260-H. The ”Siamese CNN” method

achieves accuracy rates of 90.64%- and

88.98%- for the respective datasets. The

”Multi-scripted with CNN” method achieves

accuracy rates of 95%- and 90%-. Our method

outperformed the other methods, achieving the

highest accuracy rates of 95.82%- for

BHSig260-B and 92.26%- for BHSig260-H.

Offline Signature Verification Using Deep learning and Genetic Algorithm 97

Table VI. Comparison Results for BHSig260-B

Method
BHSig260-B

FAR FRR EER

Multi-Path Siamese (MA-SCN) [41] 5.73 4.86 8.18

Siamese CNN [42] 14.25 6.41 –

Multi-scripted with CNN [10] 1.50 3.14 –

Our method 1.3 2.1 1.7

Table VII. Comparison Results for BHSig260-H

Method
BHSig260-H

FAR FRR EER

Multi-Path Siamese (MA-SCN) [41] 9.96 5.85 5.32

Siamese CNN [42] 12.29 9.6 –

Multi-scripted with CNN [10] 2.31 6.65 –

Our method 6.8 4.7 5.2

Fig. 5. The Resulting CEDAR Dataset

Fig. 6. The Resulting BHSig260-H.

98 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

Fig. 7. The Resulting BHSig260-B.

VI. CONCLUSION

This study highlights the significance of the signature verifica- tion process in various applications,

such as financial operations,

Fig. 8. The Resulting GPDS-300.

electronic document signing, and identity

verification in computer systems. Compared

with other biological methods, signature ver-

ification offers community acceptance and is

less invasive. Deep learning (DL) and

Convolutional Neural Networks (CNNs) have

significantly contributed to the advancement

of signature verifi- cation systems by

effectively extracting features from signatures.

However, the optimization of hyperparameters

for CNN models remains a challenging task in

the design of highly efficient models with

accurate results. Currently, CNN models are

predominantly manually designed, which can

be time-consuming and may not yield the best

possible outcomes. To address this challenge,

the proposed method utilizes a genetic

algorithm to develop a pop- ulation of CNN

models and identify the most suitable architec-

ture for offline signature verification. The

model was evaluated using multiple datasets

including BHSig260-Bengali, BHSig260-

Hindiin, GPDS, and CEDAR. The results of the

proposed approach demonstrated its

effectiveness, with the highest discrimination

rates achieved. The False Rejection Rate

(FRR) was 2.5%-, False Acceptance Rate

(FAR) was 3.2%-, Equal Error Rate (EER) was

2.35%-, and accuracy rate was 97.73%-. In

summary, the utiliza- tion of a genetic

algorithm for optimizing the architecture of

CNN models in signature verification leads to

improved discrimination rates and accuracy.

This study contributes to the development of

highly efficient offline signature verification

systems with poten- tial applications in various

domains. Future work could focus on further

enhancing the proposed method by exploring

additional techniques for hyperparameter

optimization. In addition, inves- tigating the

Offline Signature Verification Using Deep learning and Genetic Algorithm 99

generalizability of the developed model by

testing it on larger and more diverse datasets

would be valuable. Moreover, considering the

robustness of the model against various types

of signature forgeries and exploring methods to

mitigate potential vul- nerabilities is an

important direction for future research.

Finally, incorporating real-time processing

capabilities and evaluating the model’s

performance on streaming data can be explored

to enhance its practical applicability in real-

world scenarios.

REFERENCES

[1] A. K. Jain, A. Ross, and K.

Nandakumar, Introduction to Biometrics.

Springer, 2016.

[2] D. Impedovo and G. Pirlo, “Automatic

signature verification: the state of the art,”

IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and

Reviews), vol. 38,

no. 5, pp. 609–635, 2008.

[3] C.-L. Liu and Y. H. Yin, “Offline

handwritten signature verification–literature

review,” Pattern Recognition, vol. 40, no. 8,

pp. 2293–2307, 2007.

[4] M. A. Ferrer and C. M. Travieso,

“Offline signature veri- fication: An overview

and some recent advances,” Pattern

Recognition Letters, vol. 34, no. 3, pp. 249–

256, 2013.

[5] B. M. Al-Maqaleh and A. M. Musleh,

“An efficient offline signature verification

system using local features,” Interna- tional

Journal of Computer Applications, vol. 131,

no. 10,

pp. 39–44, 2015.

[6] L. G. Hafemann, R. Sabourin, and L. S.

Oliveira, “Of- fline handwritten signature

verification—literature review,” in Seventh

International Conference on Image

Processing Theory, Tools and Applications

(IPTA), IEEE, Nov. 1-8 2017.

[7] R. Verma and D. Rao, “Offline signature

verification and identification using angle

feature and pixel density feature and both

method together,” International Journal of

Soft Computing and Engineering, vol. 2, no.

4, pp. 740–746,

2013.

[8] L. V. Batista, D. Rivard, R. Sabourin, and

P. Maupin, “State of the art in off-line signature

verification,” in Iberoamerican Congress on

Pattern Recognition, pp. 227–234, Springer,

2009.

[9] Y. Muhtar, W. Kang, A. Rexit, and K.

Ubul, “A survey of offline handwritten

signature verification based on deep learning,”

in 2022 3rd International Conference on

Pattern Recognition and Machine Learning in

PRML, pp. 391–397, IEEE, July 2022.

[10] T. Longjam, D. R. Kisku, and P. Gupta,

“Multi-scripted writer independent off-line

signature verification using convolu- tional

neural network,” Multimedia Tools and

Applications,

pp. 1–18, Aug. 2022.

[11] S. Pal, A. Alaei, U. Pal, and M.

Blumenstein, “Performance of an off-line

signature verification method based on texture

features on a large indicscript signature dataset,”

in 12th IAPR Workshop on Document Analysis

Systems, pp. 72–77, IEEE, April 2016.

[12] A. Foroozandeh, A. Hemmat, and H.

Rabbani, “Offline hand- written signature

verification and recognition based on deep

transfer learning,” in International Conference

on Machine Vision and Image Processing

(MVIP), pp. 1–7, IEEE, Feb. 2020.

[13] N. Sharma, S. Gupta, P. Mehta, X.

Cheng, A. Shankar,

P. Singh, and S. R. Nayak, “Offline signature

verification using deep neural network with

application to computer vi- sion,” Journal of

Electronic Imaging, vol. 31, pp. 041210– 1–

041210–10, Jul. 2022.

[14] Y. LeCun, Y. Bengio, and G. Hinton,

“Deep learning,” Na- ture, vol. 521, pp. 436–

100 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

444, May 2015.

[15] C. Szegedy, W. Liu, Y. Jia, P.

Sermanet, S. Reed,

D. Anguelov, and A. Rabinovich, “Going

deeper with convo- lutions,” in Proceedings of

the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1–9, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun,

“Deep residual learning for image

recognition,” in Proceedings of the IEEE

Confer- ence on Computer Vision and Pattern

Recognition, pp. 770–

778, 2016.

[17] E. Parcham, M. Ilbeygi, and M. Amini,

“Cbcapsnet: A novel writer-independent

offline signature verification model us- ing a

cnn-based architecture and capsule neural

networks,” Expert Systems with Applications,

p. 115649, Dec. 2021.

[18] G. Huang, Z. Liu, K. Q. Weinberger, and

L. van der Maaten, “Densely connected

convolutional networks,” in Proceedings of the

2017 IEEE Conference on Computer Vision and

Pattern Recognition, (Honolulu, HI, USA), pp.

2261–2269, 2017.

[19] A. Krizhevsky, I. Sutskever, and G. E.

Hinton, “Imagenet classification with deep

convolutional neural networks,”

Communications of the ACM, vol. 60, no. 6, pp.

84–90, 2017.

[20] C. Clark and A. Storkey, “Training deep

convolutional neural networks to play go,” in

International Conference on Machine Learning,

pp. 1766–1774, PMLR, Jun. 2015.

[21] N. Purohit, S. Purohit, and C. S. Satsangi,

“Offline handwrit- ten signature verification

using template matching and clus- tering

technique,” International Journal of Computer

Science and Mobile Computing, vol. 2, pp.

295–301, Apr. 2014.

[22] K. Simonyan and A. Zisserman, “Very

deep convolutional networks for large-scale

image recognition,” arXiv preprint,

pp. 1409–1556, Sep. 2014.

[23] F. Johnson, A. Valderrama, C. Valle, B.

Crawford, R. Soto, and R. Ñ anculef,

“Automating configuration of convolutional

neural network hyperparameters using genetic

algorithm,” IEEE Access, vol. 8, pp. 156139–

156152, 2020.

[24] J. Donahue, L. Anne, S. Guadarrama,

M. Venugopalan,

S. Rohrbach, K. Saenko, and T. Darrell, “Long-

term recurrent convolutional networks for

visual recognition and descrip- tion,” in

Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp.

2625–2634, 2015.

[25] S. Dey, A. Dutta, J. I. Toledo, S. K.

Ghosh, J. Llado´s, and

U. Pal, “Signet: Convolutional siamese

network for writer independent offline

signature verification,” arXiv preprint

arXiv:1707.02131, 2017.

[26] C. Yinka-Banjo and C. Okoli, “Signature

verification using siamese convolutional

neural networks,” Covenant Journal of

Informatics and Communication Technology,

2019.

[27] E. G. Arhore, M. Yasaee, and I. Dayyani,

“Optimisation of convolutional neural network

architecture using genetic algo- rithm for the

prediction of adhesively bonded joint

strength,” Structural and Multidisciplinary

Optimization, vol. 65, no. 9,

pp. 1–16, 2022.

[28] F. M. Alsuhimat and F. S. Mohamad, “A

hybrid method of feature extraction for

signatures verification using cnn and hog: A

multi-classification approach,” IEEE Access,

vol. 11,

pp. 21873–21882, 2023.

[29] C. Li, J. Jiang, Y. Zhao, R. Li, E.

Wang, X. Zhang, and

K. Zhao, “Genetic algorithm based hyper-

parameters opti- mization for transfer

convolutional neural network,” in In-

ternational Conference on Advanced

Algorithms and Neural Networks (AANN

2022), vol. 12285, pp. 232–241, SPIE, Jun.

Offline Signature Verification Using Deep learning and Genetic Algorithm 101

2022.

[30] O. M. Assim and A. M. Alkababji, “Cnn

and genetic al- gorithm for finger vein

recognition,” in 2021 14th Interna- tional

Conference on Developments in Systems

Engineering (DeSE), pp. 503–508, IEEE, Dec.

2021.

[31] X. Yang, X. Zeng, H. Fu, and Y. Zhang,

“Selection of features for signature verification

using the genetic algorithm,” Com- puters and

Industrial Engineering, vol. 30, no. 4, pp.

1037– 1045, 1996.

[32] V. E. Ramesh and M. Narasimha, “Off-

line signature verifica- tion using genetically

optimized weighted features,” Pattern

Recognition, vol. 32, no. 2, pp. 217–233, 1999.

[33] D. P. Sudharshan and R. N. Vismaya,

“Handwritten signa- ture verification system

using deep learning,” in 2022 IEEE

International Conference on Data Science and

Information System (ICDSIS), pp. 1–5, IEEE,

Jul. 2022.

[34] A. S. Mondal, “Evolution of convolution

neural network ar- chitectures using genetic

algorithm,” in 2020 IEEE Congress on

Evolutionary Computation (CEC), pp. 1–8,

IEEE, Jul. 2020.

[35] L. G. Hafemann, R. Sabourin, and L. S.

Oliveira, “Learning features for offline

handwritten signature verification using deep

convolutional neural networks,” Pattern

Recognition, vol. 70, pp. 163–176, 2017.

[36] V. Malekian, A. Aghaei, M. Rezaeian,

and M. Alian, “Rapid offline signature

verification based on signature envelope and

adaptive density partitioning,” in 2013 First

Iranian Confer- ence on Pattern Recognition

and Image Analysis (PRIA),

pp. 1–6, IEEE, Mar. 2013.

[37] A. M. Q. Musleh and A. M. O. Al-

Azzani, “Developing a model for offline

signature verification using cnn architec- tures

and genetic algorithm,” IEEE Access, vol. 1,

no. 3,

pp. 1–1, 2023.

[38] V. Nair and G. E. Hinton, “Rectified

linear units improve restricted boltzmann

machines,” in Proceedings of the 27th

International Conference on Machine

Learning (ICML-10),

pp. 807–814, 2010.

[39] I. Goodfellow, Y. Bengio, and A.

Courville, Deep Learning. MIT Press, 2016.

[40] M. A. Ferrer, J. F. Vargas, A. Morales,

and A. Ordonez, “Robustness of offline

signature verification based on gray level

features,” IEEE Transactions on Information

Forensics and Security, vol. 7, no. 3, pp. 966–

977, 2012.

[41] X. Zhang, Z. Wu, L. Xie, Y. Li, F. Li, and

J. Zhang, “Multi- path siamese convolution

network for offline handwritten sig- nature

verification,” in 2022 The 8th International

Confer- ence on Computing and Data

Engineering, pp. 51–58, Jan. 2022.

[42] W. Xiao and Y. Ding, “A two-stage

siamese network model for offline handwritten

signature verification,” Symmetry, vol. 14, no.

6, p. 1216, 2022.

[43] L. G. Hafemann, R. Sabourin, and L. S.

Oliveira, “Writer- independent feature

learning for offline signature verifica- tion

using deep convolutional neural networks,” in

2016 In- ternational Joint Conference on

Neural Networks (IJCNN),

pp. 2576–2583, IEEE, 2016.

[44] S. M. Sam, K. Kamardin, N. N. A. Sjarif,

and N. Mo- hamed, “Offline signature

verification using deep learning convolutional

neural network (cnn) architectures googlenet

inception-v1 and inception-v3,” Procedia

Computer Science, vol. 161, pp. 475–483,

2019.

102 Abdoulwase M. Obaid Al-Azzani
,

and Abdulbaset M. Qaid Musleh

 التحقق من التوقيع دون اتصال بالإنترنت باستخدام التعلم العميق
 والخوارزمية الجينية

 2 عبدالباسط محمد قايد مصلح، 1 محمد عبيد العزاني عبدالواسع

 كلية الحاسبات وتقنية المعلومات الحاسبات،قسم علوم 1

 يمن، الصنعاءجامعة الملك
Aledresi200@yehoo.com

ليات ، بما في ذلك العمإن عملية التحقق من التوقيعات لها تطبيقات واسعة النطاق في أنظمة الكمبيوتر .مستخلص

المالية، التوقيع الإلكتروني للمستندات والتحقق من هوية المستخدم. يتمتع هذا النهج بميزة قبول المجتمع ويقدم بديلاً

أقل تدخلاً من طرق المصادقة البيولوجية الأخرى. التعلم العميق والعصبية التلافيفية برزت الشبكات كأدوات بارزة

زات الميالتوقيع مما أدى إلى تعزيز دقة وفعالية هذه الأنظمة بشكل كبير من خلال استخلاص في مجال لتحقق من

 التمييزية بشكل فعال من صور التوقيع. ومع ذلك، يظل تحسين المعلمات الفائقة في نماذج ث مهمة صعبة، لأنه يؤثر

ي يمكن ل كبير على التعديلات اليدوية، والتبشكل مباشر على كفاءة النماذج ودقتها. وحالياً، يعتمد تصميم بنيات بشك

أن تستغرق وقتاً طويلاً ربما أيضاً لا تسفر عن النتائج المثلى. ولمعالجة هذه المشكلة، تركز الطريقة المقترحة على

 استخدام خوارزمية جينية للتطور مجموعة من نماذج، مما يتيح الاكتشاف التلقائي للبنية الأكثر ملاءمة للتوقيع دون

اتصال بالأنترنت تحقق. من خلال الاستفادة من قدرات التحسين للخوارزمية الجينية، يهدف النهج المقترح إلى تحسين

الأداء العام وفعالية نموذج التحقق من التوقيع. تم تقييم فعالية الطريقة المقترحة باستخدام مجموعة بيانات متعددة، من

ومعدل قبول كاذب ٢٠٥بنسبة كاذبت تمييز ملحوظة مع معدل رفض خلال اختبارات صارمة، حقق النهج معدلا

 ٠٠٠٢٠٠٠، ومعدل ودقة قدرة ٢٢٠٥ مساوٍ بنسبةومعدل خطأ ،٥٠٢بنسبة

 الجينية.والخوارزمية العميق،، التعلم الاتصالمن التوقيع دون ـــ التحققالمفتاحية تالكلما

