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Abstract. this research addresses the critical imperative for improved cardiac care in pre-hospital emergency 

services through the integration of an artificial intelligence (AI) based diagnostic system. A survey 

involving 237 participants in Saudi Arabia illuminates the essential need to minimize on-site duration 

during cardiac emergencies, with unanimous agreement among participants regarding the pivotal role of 

AI in expediting responses, also demographic analysis provides valuable insights into participant trends, 

contributing to a comprehensive background understanding. The study proposes a methodological 

pipeline that encompasses key elements, including data augmentation, ResNet50 model training, and 

the development of a user-friendly AI assistant named DeepSTEMI. This AI assistant is designed to 

predict specifically ST-segment elevation myocardial infarction (STEMI) from given images and respond 

to initial treatment. Demonstrating robust binary classification performance, the ResNet50 model 

consistently exhibits high precision, recall, F1-score, and accuracy. A validated area under the curve 

(AUC) score of 0.98 underscores the model’s discriminative prowess in distinguishing STEMI from 

normal cases. Emphasizing practical strategies, the study advocates for collaboration with the Saudi Red 

Crescent Authority, continuous model refinement, and system expansion to address a broader spectrum of 

cardiac conditions. Furthermore, the research highlights the importance of integrating real-time data 

feeds and incorporating continuous learning as pivotal elements to enhance diagnostic precision. 

ST-segment elevation myocardial infarction, Saudi Red Crescent Authority, pre-hospital emergency services, 

Deep learning, Makkah Al-Mukarramah 

I. INTRODUCTION 

Every year, millions of Muslims from around 

the world con- verge in Makkah, Saudi 

Arabia, to embark on the significant pil- 

grimage of Hajj [1]. This spiritual journey 

demands considerable physical effort, and 

research indicates that attendees experience 

various communicable and non-

communicable diseases. Notably, 

cardiovascular diseases (CVDs) have been 
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identified as the pri- mary cause of mortality 

among Hajj participants [2]. The global 

prevalence of CVDs is on the rise, overtaking 

cancer and claiming approximately 17.3 

million lives annually [3]. Projections from 

the World Health Organization (WHO) 

estimate a further increase to 23.6 million 

CVD-related deaths by 2030, emphasizing the 

ur- gency of addressing this growing health 

concern [4]. 

Among CVDs, myocardial infarction (MI) 

and stroke con- tribute to a significant portion 

of cardiovascular-related fatalities [5]. MI, 

commonly known as a heart attack, can 

manifest as ST- segment elevation myocardial 

infarction (STEMI), involving the complete 

blockage of a coronary artery [6]. Lifestyle 

choices such as poor eating habits, inactivity, 

and stress are closely asso- ciated with 

coronary artery diseases, underscoring the 

importance of early diagnosis and 

intervention [7]. Clinical signs of MI in- 

clude chest pain and difficulty breathing [8]. 

However, accurate diagnosis requires more 

than just the observation of symptoms, as they 

may not be sensitive or specific enough. 

In acute settings, early diagnosis is paramount, 

with electrocar- diogram (ECG) and cardiac 

enzymes serving as pivotal diagnostic tools, 

particularly in severe cases like STEMI [9]. 

While enzymes may lack prompt elevation in 

STEMI, ECG signals, reflecting the heart’s 

electrical activity, offer valuable insights as a 

frontline di- agnostic approach [10, 11]. 

However, manual ECG interpretation poses 

challenges, especially in scenarios lacking 

immediate medi- cal expertise, such as 

emergencies or remote locations like the Hajj 

pilgrimage [2]. Addressing this, a growing 

body of research fo- cuses on leveraging 

artificial intelligence (AI) for clinical decision 

support systems in MI diagnosis [7], aiming 

to enhance accuracy and efficiency, 

particularly in the less-explored area of 

STEMI. 

The primary objective of the research is to 

significantly re- duce on-site duration in 

assessing and managing ECG readings, 

specifically targeting potential heart attacks 

like STEMI [12]. The current reliance on 

manual interpretation by Red Crescent profes- 

sionals leads to delays in coordinating with 

hospitals for patient admission [13]. The 

proposed solution involves integrating an AI 

algorithm for rapid ECG analysis, immediate 

treatment recommen- dations, and notifications 

to nearby hospitals equipped with cardiac 

catheterization facilities. This innovative 

approach ensures prompt evaluation and 

acceptance or rejection of cases based on 

hospital availability, streamlining the entire 

process for a continuous and efficient 

workflow. 

This research makes a substantial contribution 

to advancing pre-hospital emergency cardiac 

care, particularly during the Hajj pilgrimage. 

By comprehensively understanding health 

challenges and focusing on STEMI, this study 

aims to enhance early diagno- sis and 

intervention. Addressing challenges in ECG 

image inter- pretation, and explore innovative 

AI solutions to predict STEMI, aiming to 

reduce on-site duration and streamline hospital 

coordina- tion. Additionally, the collaboration 

with the Saudi Red Crescent Authority, 

continuous model refinement, and system 

expansion underscore our commitment to 

addressing a broader spectrum of cardiac 

conditions. The integration of real-time data 

feeds and continuous learning emerges as 

pivotal elements, enhancing diag- nostic 

precision in pre-hospital emergency settings. 

A Research question 

• How can we effectively reduce the 

mortality rate due to CVD, specifically 

focusing on STEMI, among participants in 

the Hajj pilgrimage and in other medical 

emergencies? 

• What role can artificial intelligence play 

in overcoming chal- lenges related to ECG 
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interpretation during emergency situa- tions? 

• How does the integration of real-time 

data feeds and contin- uous learning 

contribute to enhancing diagnostic precision in 

pre-hospital emergency cardiac care? 

 

The article’s structure unfolds as follows: 

Section 2 delves into an extensive background 

of the study, setting the foundation for 

understanding. Section 3 elucidates the 

research methodology, encompassing the AI 

model and survey design. Following this, 

Section 4 engages in analysis and discussion. 

Ultimately, Section 5 draws the paper to a 

close, encapsulating major recommendations, 

contributions, limitations, and areas 

earmarked for improvement. 

II. BACKGROUND STUDY 

In the pursuit of enhancing myocardial 

infarction (MI) detec- tion, Tadesse et al. 

present a groundbreaking multi-lead fusion 

approach [14]. Their primary objective is not 

only to identify the presence of MI but also to 

predict its occurrence time. To achieve this, 

they leverage the GGH dataset, specifically 

focusing on ECG data. The innovative aspect 

of their methodology lies in data fusion, 

where information from multiple leads is 

seam- lessly integrated. Employing a Dense-

Long Short-Term Memory (Dense-LSTM) 

architecture, the researchers evaluate their 

model using a comprehensive set of metrics, 

including AUROC, accu- racy, precision, 

sensitivity, specificity, and f-1 score. The 

results are remarkable, with AUROCs ranging 

from 96.7% to 73.8%, showcasing the 

efficacy of their multi-lead fusion approach in 

MI detection. 

Chen and his team contribute to the field with 

an innovative neural network (NN) algorithm 

designed for the automatic diagno- sis of acute 

myocardial infarction (AMI) [15]. Their study 

utilizes the PTB-XL dataset, employing ECG 

images for analysis. Notably, the researchers 

introduce a low-pass filter in their data 

processing pipeline to enhance signal quality. 

The core of their approach lies in a custom 

Convolutional Neural Network (CNN). The 

model is rigorously evaluated using AUROC, 

precision, sensitivity, speci- ficity, and f-1 

score, with a noteworthy 94.40% validation 

AUC. This high validation AUC underscores 

the effectiveness of their NN algorithm in 

achieving accurate and reliable AMI 

diagnosis. 

In a recent study, Gustafsson S. et al. aim to 

predict myocardial infarction (MI) from 

electrocardiogram (ECG) signals utilizing 

deep learning models. The data employed for 

this study consists of clinically collected raw 

ECG signals [16]. Notably, the researchers 

applied high-pass filters during the data 

processing phase. The deep learning method 

chosen for this task is a custom Deep Neural 

Network (DNN). Evaluation matrices, 

including the C-statistic and Brier scores, 

were employed to assess the performance of 

their model. The obtained results are 

promising, with a C-statistic of 0.991 and a 

Brier score of 0.001, indicating high accuracy 

in predicting MI. 

Jahmunah V. et al. present an innovative 

approach in their study by proposing a custom 

DenseNet and Convolutional Neu- ral 

Network (CNN) model for the classification 

of ECG signals [17]. Their data source is the 

Physikalisch-Technische Bunde- sanstalt 

(PTB) database, consisting of ECG signals. 

During the data processing phase, the 

researchers applied noise and baseline 

removal using the Daubechies 6 wavelet 

function. The chosen deep learning methods 

include DenseNet and CNN. The evalua- tion 

metrics employed for assessing the models’ 

performance are accuracy, specificity, and 

sensitivity. Impressively, the proposed 

DenseNet achieved an accuracy of 98.9%, 

while CNN exhibited a commendable 

accuracy of 98.5 

In their recent work, Hasbullah et al. aim to 
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improve myocardial infarction (MI) detection 

utilizing Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks 

(RNN) [18]. Their pri- mary goal is to 

enhance accuracy in identifying MI cases. 

The dataset chosen for this study is the PTB 

XL dataset, focusing on ECG images. 

Notably, the researchers employ a meticulous 

data preprocessing step, involving cleaning, 

before delving into fea- ture extraction using a 

combination of CNN and Long Short-Term 

Memory (LSTM) networks, denoted as CNN-

LSTM. Addition- ally, a variant of this 

architecture, CNN-BILSTM, is explored. The 

evaluation metrics encompass accuracy, recall, 

precision, and f1-score. The results 

demonstrate substantial performance, with an 

accuracy of 89% for CNN-LSTM and 91% for 

CNN-BILSTM, highlighting the efficacy of 

their approach in MI detection. 

Pham et al. contribute to the evolving 

landscape of cardiovas- cular diagnostics with 

a focus on arrhythmias and myocardial clas- 

sification [19]. Their study employs data 

from both the MIT-BH and PTB datasets, 

utilizing ECG signal data. The authors 

establish a comprehensive processing pipeline 

and leverage a Residual Con- volutional Neural 

Network (Residual-CNN) for their 

classification task. Evaluation metrics include 

accuracy, recall, and precision. The achieved 

results are highly promising, with an accuracy 

of 98.5% on the MIT-BH dataset and 98.28% 

on the PTB dataset, emphasizing the 

robustness of their model in effectively 

classify- ing arrhythmias and myocardial 

conditions. 

While these studies showcase remarkable 

strides in advancing cardiovascular disease 

diagnostics, a notable gap emerges the ab- 

sence of dedicated research on AI assistance 

base applications to predict STEMI. This 

critical area remains unexplored, posing a 

significant opportunity for future 

investigations. Furthermore, the identified 

research gaps include the lack of studies 

assessing the performance of deep learning 

models in real-world clinical settings and the 

need for seamless integration with healthcare 

profession- als’ workflows. Addressing these 

gaps becomes imperative for the holistic 

implementation of deep learning in practical 

health- care scenarios. To bridge these voids, 

a novel study is proposed. This study aims to 

develop a deep learning-based system tailored 

explicitly for the diagnosis of STEMI. The 

hypothesis underlying this endeavour posits 

that such a system, designed to seamlessly 

integrate with clinical workflows, will 

enhance the accuracy and efficiency of 

STEMI diagnosis. Ultimately, this intervention 

holds the potential to translate into improved 

patient outcomes, aligning 

with the overarching goal of advancing 

cardiovascular healthcare through innovative 

technological solutions. 

The research methodology in (Fig. 1) consists 

of 11 sequential steps, commencing with a 

comprehensive survey involving 237 

participants to assess the urgency of an AI-

based diagnosis system for pre-hospital 

emergencies. Following the survey, a 

meticulous analysis of the data was conducted, 

shaping the research trajectory based on key 

insights. Subsequently, a dataset was curated 

to align with research objectives, undergoing 

thorough pre-processing to optimize its utility 

for training purposes. The dataset was then 

partitioned into training and validation sets to 

facilitate systematic model training. 

The model training phase utilized the prepared 

dataset to equip the model with the necessary 

knowledge for effective diagnos- tic 

capabilities. Evaluation of the model ensued, 

culminating in the generation of a 

comprehensive classification report. In the 

final steps, the trained model was strategically 

deployed to cre- ate a user-friendly 

application interface, bridging the gap 

between model development and real-world 
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applicability for enhanced ac- cessibility. 

A Details of the Survey 

This section includes the survey questions, 

demographic in- formation of the participants, 

and the subsequent analysis of the survey 

data. Through analysis, we examined the 

survey responses, conducted statistical 

calculations, and drew conclusions. 

A.1 Survey Questions 

The survey encompassed a total of 10 

questions (Table. I) , with participants 

providing ratings on a scale of 1 to 5. A 

rating of 1 represented strong disagreement, 

while a rating of 5 denoted strong agreement. 

These questions aimed to gather insights 

specif- ically related to the topic of AI in 

STEMI. In addition to the 10 survey 

questions, participants were also asked to 

provide demo- graphic information through 

five additional questions (Figure 2). These 

demographic-related questions covered 

important factors such as age, education level, 

work type, years of experience, and work 

region. Collecting this demographic data 

allowed for a more comprehensive analysis, 

considering potential variations or pat- terns 

based on different participant characteristics. 

The survey as a whole aimed to explore 

participants’ perspectives, opinions, and 

experiences regarding the application of AI in 

STEMI. By combin- ing the survey responses 

and demographic information, valuable 

insights could be derived to inform decision-

making, research, or advancements in this 

specific field. 

A.2 Demographic Analysis 

In Figure 2, the demographic information of 

the participants is presented, showcasing 

significant trends observed across different 

categories. The analysis of the participants’ 

demographic data provided valuable insights 

into the characteristics of the survey 

respondents and their potential influence on 

the survey results. 
Table I. Summary Of The Survey Data Analysis 

 

ID Questions Rating 

1 How important is it to have an artificial intelligent support system to 
quickly di- 

agnose and treat acute coronary syndrome (heart attack) (STEMI) in pre-

hospital emergency medical services? 

168 out of 237 responses rated 5 

2 How important is the use of artificial intelligence for the speed and 
accuracy of 

chart reading and treatment of acute coronary syndrome (heart attack) 

(STEMI) in the pre-hospital setting? 

168 out of 237 responses rated 5 

3 How important is the impact of an artificial intelligent support system in 
reduc- 

ing the time from symptom onset to definitive treatment for pre-hospital 

acute coronary syndrome (heart attack) (STEMI) patients? 

157 out of 237 responses rated 5 

4 In your opinion, how important is it to enhance the efficiency and 
effectiveness 

of pre-hospital emergency medical services in the management of acute 

coronary syndrome (heart attack) (STEMI) cases to reduce on-site stay 

time? 

168 out of 237 responses rated 5 

5 How important is it to use advanced technologies such as artificial 
intelligence to 

quickly treat acute coronary syndrome (heart attack) (STEMI) by 

reminding you of the appropriate treatment at the pre-hospital stage? 

165 out of 237 responses rated 5 

6 To what extent do you think implementing an artificial intelligence support 
system 

could contribute to better patient outcomes and lower mortality rates for 

147 out of 237 responses rated 5 
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pre- hospital acute coronary syndrome (heart attack) (STEMI) cases? 

7 How important is it to provide healthcare workers in pre-hospital 
emergency 

services with an advanced support system that helps in the rapid 

diagnosis and treatment of acute coronary syndrome (heart attack) 

(STEMI)? 

176 out of 237 responses rated 5 

8 How important is it to allocate resources and invest in developing and 
implement- 

ing an AI support system for the management of acute coronary syndrome 

(heart attack) (STEMI)? 

157 out of 237 responses rated 5 

9 How valuable would it be to have a system that can provide real-time 
decision 

support and treatment recommendations for prehospital acute coronary 

syndrome (heart attack) (STEMI) cases? 

170 out of 237 responses rated 5 

10 How necessary is it to improve the quality and efficiency of 
comprehensive 

emergency medical services for patients with acute coronary syndrome 

(heart attack) (STEMI) by adopting an artificial intelligent support 

system? 

172 out of 237 responses rated 5 

 

 

 

 
 

Fig. 1. Proposed AI-based diagnosis pipeline 
 

 

 

Fig. 2. Participants’ demographic information 
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One noteworthy trend observed in the 

demographic informa- tion is the age 

distribution of the participants. The (Fig. 2 

(A)) highlights five distinct age groups 

represented in the survey, indi- cating whether 

the respondents were predominantly from 

younger or older age brackets. The largest 

cohort falls within the 31-40 age range, 

followed by the 41-50 and 21-30 groups. 

Subsequently, the 51-60 age category is 

noted, with the smallest segment rep- 

resenting those aged 60 and above. This 

information can shed light on the 

generational perspectives and experiences 

regarding AI in STEMI, as different age 

groups may have varying levels of familiarity 

and comfort with technology. 

Another important category depicted in (Fig. 

2 (B)) is the education level of the 

participants. This information reveals the 

educational backgrounds of the respondents, 

such as whether they held undergraduate 

degrees, graduate degrees, or had other lev- 

els of educational attainment. the majority of 

participants hold Diploma degrees, 

positioning it as the largest group. Following 

closely are individuals with Bachelor’s 

degrees. Notably smaller are the cohorts with 

Master’s degrees, and a minority possess 

Ph.D. qualifications. This data can provide 

insights into the po- tential influence of 

education on participants’ understanding and 

perceptions of AI in STEMI. 

Furthermore, the (Fig. 2 (C)) presents the 

distribution of par- ticipants across different 

work types. It distinguishes between those in 

the field (refers to activities and operations 

that are con- ducted on-site or in response to 

emergencies, such as first aid at the scene of an 

accident) and those out of the field or non-

operational (refers to activities that are 

conducted off-site, such as planning, 

administration, and training). The 

predominant work type among participants is 

identified as field workers, constituting the 

largest group. In contrast, the remaining 

participants are categorized as non-field 

workers. This differentiation provides 

valuable in- sights into the diverse 

perspectives and experiences related to AI in 

STEMI across different professional 

backgrounds. 

Additionally, the demographic information in 

(Fig. 2 (D)) high- lights the distribution of 

participants based on their years of expe- 

rience in the field. This data categorizes 

respondents into groups representing 

different levels of professional experience, 

ranging from novice to experienced 

practitioners. Analysis of experience years 

reveals a significant group with 11-15 years 

of experience, marking it as the largest 

segment. The subsequent group holds 6-10 

years of experience, followed by participants 

with 21+ years, 1-5 years, and 16-20 years of 

professional experience. This in- formation 

can provide insights into how the level of 

experience might influence participants’ 

perceptions and attitudes towards AI in 

STEMI. 

Lastly, (Fig. 2 (E)) illustrates the 

geographical breakdown of the participants, 

highlighting the regions or countries they 

come from. The participants’ distribution 

across various work regions is organized in 

descending order, starting with the most 

represented groups: Makkah, Riyadh, 

Eastern, Al-Qassim, Hail, Assir, Al- Baha, 

Tabuk, Jazan, Najran, Aljouf, and Northern 

borders. This data can be valuable in 

identifying potential regional disparities in 

perspectives and experiences regarding AI in 

STEMI, taking into account the impact of 

cultural, regulatory, and healthcare system 
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variations among different regions. 

By examining the trends and patterns in the 

demographic in- formation presented in (Fig. 

2), researchers and stakeholders can gain a 

deeper understanding of the diverse 

perspectives and poten- tial biases that may 

exist within the survey data. These insights 

can inform further analysis and interpretation 

of the survey results, allowing for a more 

comprehensive understanding of the implica- 

tions of AI in STEMI across different 

demographic categories. 

A.3 Survey Response Analysis 

The survey results overwhelmingly 

demonstrate a consensus among participants 

(Table I), with 168 to 176 responses consis- 

tently rating each question with a score of 5, 

indicating strong agreement. The collective 

viewpoint emphasizes the critical im- 

portance of implementing an artificial 

intelligence (AI) support system in pre-

hospital emergency medical services for the 

swift diagnosis and treatment of acute 

coronary syndrome (STEMI), commonly 

known as a heart attack. The participants 

express a strong belief in the potential of AI 

to enhance the speed and ac- curacy of chart 

reading, reduce the time from symptom 

onset to definitive treatment, and ultimately 

improve patient outcomes and lower 

mortality rates. The figures of the survey’s 

responding graphs are available in the 

supplementary materials. 

It also underscores the significance of AI in 

augmenting the efficiency and effectiveness 

of pre-hospital emergency medical services, 

with a specific focus on minimizing on-site 

stay time. Moreover, there is a unanimous 

call for allocating resources and investments 

to develop and implement AI support systems 

in man- aging acute coronary syndrome cases. 

The resounding agreement across all survey 

questions signals a clear mandate for the 

integra- tion of advanced technologies, such 

as real-time decision support and treatment 

recommendations, to revolutionize and 

elevate the quality of comprehensive 

emergency medical services for STEMI 

patients in the pre-hospital setting. 

Lastly, the survey results strongly advocate 

for the emergence and development of an AI-

based diagnosis system tailored for pre- 

hospital settings, highlighting the pressing 

need for advancements in this critical 

healthcare domain. 

B Dataset Description 

In this experiment, we employed the ECG 

Images dataset of Cardiac Patients [20]. The 

fundamental purpose behind curating this 

dataset is to facilitate the scientific community 

in their research endeavours focused on CVD 

specifically on STEMI. Further infor- mation 

about the dataset can be found in (Table. II). 

B.1 Data Pre-processing 

In the context of this experiment, the two 

available classes in the dataset were utilized 

for binary classification: STEMI and Nor- 

mal, containing 240 and 284 instances, 

respectively. The limited amount of data for 

prediction and the presence of data imbalance 

raised concerns, prompting the application of 

data augmentation as a remedial measure. 

To address these challenges, various 

augmentation techniques were employed, 

encompassing rotation, width and height 

shift- ing, shearing, zooming, and horizontal 

flipping. These techniques were chosen to 

simulate diverse real-world scenarios and 

potential 

variations that the model may encounter 

during training. For in- stance, rotation 

mimics alterations in the orientation of the 

images, shifts and shearing introduce 

variations in image positioning and shape, 
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zooming adds variability in scale, and 

horizontal flipping simulates mirror images 

of the input. 

The augmentation process involves iterating 

through the origi- nal images, applying the 

chosen techniques, and saving the newly 

generated images to the same directory. This 

systematic approach results in an expanded 

dataset, contributing to a more robust and 

diverse collection of images suitable for 

training a deep learning model. Specifically, 

two augmented images are generated for each 

original image, effectively tripling the dataset 

size for the ”Normal and STEMI class” class 

(Table. III). 

C Data Splitting 

The augmented data classes, designated as 

the new dataset, are meticulously divided into 

distinct training and validation sets (Table. 

IV). Comprising 80% of the data, the training 

set is thoughtfully curated through a 

randomized process to facilitate effective 

model training. Concurrently, the validation 

set, consti- tuting 20% of the data, remains 

segregated throughout the training phase, 

functioning as an autonomous dataset for 

intricate perfor- mance evaluation. This 

sophisticated data-splitting methodology 

proves crucial for identifying and mitigating 

potential overfitting, substantiating the 

model’s robustness. 

The deliberate separation of training and 

validation sets instil confidence in the 

model’s broader generalization capabilities, a 

critical aspect for its application to diverse 

and novel instances. This approach reflects a 

balanced and strategic framework, intri- 

cately designed to optimize the model’s 

learning process while rigorously evaluating 

its adaptability and efficacy in addressing 

real-world scenarios. 

D Model Training 

This training methodology, characterized by 

careful data segre- gation, strategic layer 

freezing, and model evaluation, establishes a 

robust framework for training a deep learning 

model on selected ECG image data. In the 

model training phase, a data generator 

efficiently manages augmented image data, 

streaming it from a designated directory to 

expose the model to diverse examples. A 

separate validation data generator is 

concurrently established to as- sess the 

model’s performance on an independent 

subset, ensuring an unbiased evaluation of its 

generalization capabilities. Lever- aging the 

pre-trained ResNet50 model as a foundation, 

initially trained on ImageNet, its layers are 

frozen to preserve knowledge from the pre-

training phase (Fig. 3). Atop ResNet50, a 

custom model is crafted, featuring a 

flattening layer followed by dense layers. 

The final layer employs a sigmoid activation 

function for binary classification. 

The model is compiled with a binary cross-

entropy loss func- tion and the Adam 

optimizer. Over ten epochs, the training pro- 

cess unfolds, allowing the model to learn 

discerning patterns in 

 

Table II. Details of the dataset 

 

Total patient Data type Data class Image count Image resolution 

12 JPG STEMI 240 2213 × 1572 

12 JPG Normal 285 2213 × 1572 
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  TP  

Table III. Number of instances in each class in the final dataset 

 

Number of Instances in Both 

Class Before Augmentation 
STEMI 240 Normal 285 

Number of Instances in Both 

Class After Augmentation 
STEMI 469 Normal 549 

Number of Instances in Both 

Class in the Final Dataset 
STEMI 709 Normal 834 

the augmented ECG image dataset. Accuracy and loss 

metrics are vigilantly monitored throughout this 

iterative training. Strategi- cally freezing the pre-

trained layers empowers the model to capture generic 

features from ImageNet, while subsequent layers 

specialize in task-specific information for image 

classification. This layered approach ensures efficient 

training on a relatively small dataset, blending pre-

learned features with task-specific adaptations. 

We tested and compared ResNet50, 

EfficientNetB0, and DenseNet121 to determine the 

best algorithm for classifying aug- mented ECG 

images. ResNet50’s deep architecture with skip 

connections addresses the vanishing gradient 

problem while also capturing intricate features, 

making it ideal for large datasets. Ef- 

instances correctly predicted as positive, while 

True Negatives (TN) represents the number of 

instances correctly predicted as negative. On the 

other hand, False Positives (FP) indicate the 

number of instances predicted as positive when 

they are actually negative, and False Negatives 

(FN) represent instances predicted as negative 

when they are actually positive. 

Accuracy 1, as a foundational metric, measures 

the proportion of correctly classified instances out 

of the total predictions. It provides a fundamental 

assessment of the model’s performance and is 

calculated by dividing the number of correct 

predictions by the total predictions. 

ficientNetB0’s balanced scaling of network width, 

depth, and res- olution enables state-of-the-art 

performance with fewer parame- ters, providing an 

excellent balance of accuracy and efficiency for 

Accuracy = 
 TP + TN

 
TP + TN + FP + FN        (1) 

 

augmented ECG classification. DenseNet121’s dense 

connectiv- ity pattern encourages feature reuse and 

gradient flow, allowing deeper networks without 

vanishing gradients. After testing the three models 

and comparing their results, ResNet50 was chosen 

due to its 50-layer depth, adeptly capturing intricate 

signal fea- 

Precision 2 evaluates the model’s accuracy in 

positive predic- tions. It quantifies the model’s 

ability to make precise affirmative classifications 

and is calculated by dividing the number of true 

positives by the sum of true positives and false 

positives. 

tures, and addressing training nuances with residual 

connections. Pre-training on ImageNet supports 

effective transfer learning, im- proving performance 

with limited ECG data. Compared to basic 

 

Precision 

= 
TP + FP 

(2)
 

CNNs, ResNet50 excels in image classification, 

crucial for dis- cerning subtle ECG details, while its 

balanced complexity and efficiency make it suitable 

for moderate datasets without excessive computational 

demands. ResNet50’s preference over deeper mod- 

els like DenseNet is grounded in practical 

considerations, lever- aging its architecture, 

especially residual connections, to expedite training 

and address nuanced ECG patterns efficiently. 

E Evaluation Metrics 

During the comprehensive evaluation of our 

machine learning model, four crucial metrics, namely 

Accuracy, Precision, Recall, and F1-Score, play a 

vital role in assessing its overall performance. Each 

metric provides unique insights into the model’s 

ability to 

Recall 3, also known as sensitivity or the true 

positive rate, as- sesses the model’s effectiveness in 

capturing all positive instances. It is calculated by 

dividing the number of true positives by the sum of 

true positives and false negatives. 

 

Recall = 
TP

 
(3) 

TP + FN 
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The F1-Score 4, which combines precision and 

recall into a single metric, offers a balanced 

evaluation of the model’s overall performance. It 

is calculated using the harmonic mean of precision 

and recall. 
accurately classify instances and handle errors. 
2 × Precision × Recall 

2 ×TP 
 

To begin with, True Positives (TP) represents the 

number of 

F1 = 

Precision + Recall 
= 

2 ×TP + FP + FN 
(4)

 

 
 
 

 

 

 

Fig. 3. DeepSTEMI model architecture based on the pre-trained ResNet50 model 

Table IV. Data count in different data splits 

 

Data Split Data Count 

STEMI (Training) 568 

STEMI (Validation) 141 

Normal (Training) 668 

Normal (Validation) 166 

In addition to these essential evaluation metrics, the 

training and validation plots provide further insights into 

the model’s learn- ing dynamics over epochs. 

Visualizations of accuracy and loss trends during the 

training and validation phases offer valuable in- form 

 

Fig. 4. DeepSTEMI web tool for STEMI prediction 
 

F Model Deployment and Web-tool 

Creation 

To create an interactive application, we 

used a pre-trained.h5 model and the Flask 
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framework. With the use of this application, 

users can quickly upload medical photos 

from datasets, allow- ing our AI assistant to 

differentiate between normal instances and 

STEMI (Fig. 4) and deliver prompt 

diagnosis. 

The application extends valuable initial 

treatment suggestions. Detailed information, 

including prediction accuracy, prediction 

time, and the date and time of the 

analysis, is provided to users. The 

uploaded medical image is dynamically 

showcased on the screen, enhancing the user 

experience and facilitating well- informed 

decision-making in cardiac health 

assessment. 

III. RESULT ANALYSIS AND 

DISCUSSION 

The evaluation results present a detailed 

breakdown of ResNet50’s, DenseNet’s, and 

EfficientNet’s performance across two 

distinct classes: STEMI and Normal 

instances. These met- rics: Precision, Recall, 

F-1 Score, and Accuracy offer insights into 

how well the model accurately identifies 

instances from each class (Table. V VI VII). 
Table V. Result analysis of the classification task of EfficientNet 

Data Class Precision Recall F-1 score 

0 (STEMI) 1.00 0.79 0.88 

1 (Normal) 0.65 1.00 0.79 

Accuracy: 0.85 

 

In Table V the class corresponding to STEMI, 

the precision is noted at 1.00. This implies 

that when the model predicts an instance as 

STEMI, it is correct 100% of the time. The 

recall for STEMI is 0.79, indicating the model 

successfully captures 79% of all actual 

STEMI instances. The F-1 Score, a harmonic 

mean of precision and recall, is calculated at 

0.88. This metric considers both precision 

and recall, providing a holistic view of the 

model’s performance. 

On the other, in the class corresponding to 

Normal instances, the precision is 0.65, 

signifying that when the model predicts an 

instance as Normal, it is accurate 65% of the 

time. The recall for Normal instances is 1.00, 

indicating that the model successfully 

identifies 100% of all actual Normal 

instances. The F-1 Score for this class is 0.79, 

representing the assessment of precision and 

recall. 

Table VI. Result analysis of the classification task of EfficientNet 

 

Data Class Precision Recall F-1 score 

0 (STEMI) 0.94 0.96 0.95 

1 (Normal) 0.89 0.86 0.87 

Accuracy: 0.93 

In Table VI the class corresponding to 

STEMI, the precision is noted at 0.94. This 

implies that when the model predicts an 

instance as STEMI, it is correct 94% of the 

time. The recall for STEMI is 0.96, indicating 

the model successfully captures 96% of all 

actual STEMI instances. The F-1 Score, a 

harmonic mean of precision and recall, is 

calculated at 0.95. This metric considers both 

precision and recall, providing a holistic view 

of the model’s performance. 
On the other, in the class corresponding to 
Normal instances, the precision is 0.89, 
signifying that when the model predicts an 
instance as Normal, it is accurate 89% of the 
time. The recall for Normal instances is 0.86, 
indicating that the model successfully 
identifies 86% of all actual Normal instances. 
The F-1 Score for this class is 0.87, 
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representing the assessment of precision and 
recall. 

 
 

 
Table VII. Result analysis of the classificationtask of EfficientNet 

 

Data Class Precision Recall F-1 score 

0 (STEMI) 0.96 0.97 0.97 

1 (Normal) 0.95 0.96 0.96 

Accuracy: 0..97 

Finaly in Table VII the class corresponding to 

STEMI, the precision is noted at 0.96. This 

implies that when the model predicts an 

instance as STEMI, it is correct 96% of the 

time. The recall for STEMI is 0.97, 

indicating the model successfully captures 

97% of all actual STEMI instances. The F-1 

Score, a harmonic mean of precision and 

recall, is calculated at 0.97. This balanced 

metric considers both precision and recall, 

providing a holistic view of the model’s 

performance. 

On the other, in the class corresponding to 

Normal instances, the precision is 0.95, 

signifying that when the model predicts an 

instance as Normal, it is accurate 95% of the 

time. The recall for Normal instances is 0.96, 

indicating that the model successfully 

identifies 96% of all actual Normal instances. 

The F-1 Score for this class is 0.96, 

representing a harmonized assessment of 

precision and recall. 

ResNet50 outperforms EfficientNet and 

DenseNet121, achiev- ing an overall 

accuracy of 0.97 for Class 0 and 1, 

indicating that 97% of STEMI and normal 

instances are correctly predicted. These 

results indicate that the model exhibits strong 

performance in distinguishing between 

Myocardial Infarction and Normal in- 

stances. The high precision and recall values, 

along with balanced F-1 scores, reflect the 

model’s accuracy and effectiveness in clas- 

sifying instances from both classes. 

Performance evaluation of the DeepSTEMI 

model, as depicted in (Fig.5), underscores its 

highly promising capabilities. However, the 

training and validation accuracy and loss plots 

provide crucial 

insights into the model’s learning dynamics. 

The reported training and validation loss, 

standing at 0.13019, signifies the average 

dissimilarity between predicted and true labels 

throughout the training phase. The 

accompanying loss plot exhibits a smooth 

curve, affirming the model’s proficiency in 

minimizing errors and optimizing its 

predictive accuracy. This characteristic 

suggests that the model has successfully 

learned to capture intricate patterns in the 

training data. 

While the accuracy plot may exhibit some 

discrepancies at- tributable to the diverse 

augmentation images and the substantial 

volume of data, the overall test accuracy 

remains consistent with the training accuracy, 

reaching an impressive 97.17%. This align- 

ment serves as a strong indicator of the 

model’s robust generaliza- tion to new, 

unseen data. The model’s ability to maintain 

similar accuracy levels on both training and 

test datasets underscores its reliability and 

efficacy. 

In the accompanying visual representation of 

the training and test accuracy, the 

convergence of the curves indicates that the 

model effectively learns from the training data 

and exhibits robust generalization to the test 

data. The consistent and high accuracy 

values, coupled with the relatively low loss, 

collectively signify a well-performing model. 

Lastly, this experiment sought a 
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comprehensive understanding of the model’s 

performance by generating a Receiver 

Operating Characteristic (ROC) curve in 

(Fig.6) which is a powerful visu- alization 

graph, that enables a nuanced assessment of a 

model’s ability to discriminate between 

classes across various decision thresholds. In 

this case, the ROC curve was derived from 

the predictions of the ResNet50 model. 

Notably, the AUC score, a quantitative 

measure derived from the ROC curve, serves 

as a key indicator of the model’s discrimina- 

tive prowess. The ResNet50 model, upon 

evaluation, exhibited an impressive AUC 

score of 0.98. This high AUC score 

substantiates the model’s exceptional 

performance in distinguishing between 

classes, reinforcing its efficacy in classifying 

instances within the context of our study. 

To sum up, the ResNet50 model demonstrated 

strong and con- sistent performance across a 

spectrum of evaluation metrics. Its ability to 

accurately and reliably classify cardiac 

instances under- scores its potential utility in 

tasks associated with cardiovascular image 

classification. These results not only validate 

the model’s effectiveness but also emphasize 

its prospective contributions to the ongoing 

advancements in the field of medical image 

analysis. 

IV. CONCLUSION AND FUTURE 

DIRECTION 

In conclusion, this research endeavours to 

harness technologi- cal advancements with 

the primary aim of substantially mitigating 

on-site durations for medical teams, 

particularly in the context of cardiac 

emergencies. The imperative nature of this 

research is underscored by a meticulous 

statistical analysis conducted in the Makkah 

region, revealing prolonged on-site durations 

that harbor potential adverse implications for 

patient outcomes. 

The future trajectory of this study 

emphasizes the pragmatic 

 

Fig. 5. Training and validation accuracy and loss plots of DeepSTEMI 
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Fig. 6. AUC/ROC of DeepSTEMI model 

 

implementation and validation of the AI-

based diagnosis system through 

collaboration with healthcare institutions. 

Continuous re- finement of the model will 

be essential, ensuring its adaptability to the 

evolving landscape of healthcare scenarios. 

Additionally, the expansion of the system to 

cover a broader spectrum of cardiac 

conditions is envisaged, promising enhanced 

diagnostic capabili- ties and applicability in 

diverse clinical scenarios. Integrating real- 

time data feeds and mechanisms for 

continuous learning stands out as a 

promising avenue for elevating the system’s 

responsiveness and diagnostic precision. 

Acknowledging the current focus on binary 

classification of STEMI and normal cases as 

a limitation, future developments aim to 

transform the system into a comprehensive 

multi-cardiovascular disease (CVD) 

diagnosis tool. This evolution will enhance 

the sys- tem’s versatility, providing 

healthcare practitioners with a holistic 

diagnostic solution. As part of future work, 

training the model with a large-scale dataset 

comprising real-life data is envisioned to 

augment robustness and generalization 

capabilities across diverse clinical scenarios. 

In essence, this research lays a robust 

academic foundation for the seamless 

integration of AI into pre-hospital emergency 

medical services, promising far-reaching 

implications for the expeditious and 

effective management of cardiac care. 

Aligned with the Saudi Red Crescent 

Authority’s mission to reduce the impact of 

heart attacks and in line with the 

healthcare objectives of Saudi Vi- 

sion 2030, the proposed DeepSTEMI model 

aims to substantially enhance the quality of 

life for patients by delivering timely and 

effective interventions. 
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ة  ضلنظام الدعم الذكي اصطناعيا للتشخيص السريع وعلاج ارتفاع احتشاء ع
 المستشفى في مكة المكرمة  ما قبلالقلب في مرحلة خدمات الطوارئ الطبية 

 

   5، أحمد الحازمي 3لؤي البرادعي ،2 رفيف البريم،  1فارس الهذلي ، 1 عبدالعزيز البرداعي
   2  سمية البرادعي ، 4جنى السلمي  

 ، المملكة العربية السعودية الرياض ، الهلال الاحمر السعودي 1
 قسم علوم الحاسبات ، كلية علوم الحاسب والمعلومات ،   2
 ، المملكة العربية السعودية جدة ،الملك عبدالعزيز جامعة 

 ، جامعة أم القرى، مكة المكرمة، المملكة العربية السعودية الصحية  العلوم، كلية الطوارئ قسم   3
 ، المملكة العربية السعودية جامعة الملك عبدلله للعلومو التقنية  ، حاسب الأليوال الهنسة قسم علوم  4

 مدينة الملك عبدلله الطبية ، مكة المكرمة ، المملكة العربية السعودية   5
Salbaradei@kau.edu.sa , Srca10765@srca.org.sa,  Fahothli@srca.org.sa   

Relberim@stu.kau.edu.sa 

 S441001212@st.uqu.edu.sa  Ahmadaied@hotmail.com  Janasolamy@gmail.com   
 

المستشفى من  .  مستخلص قبل  الطوارئ  في خدمات  القلب  رعاية  لتحسين  الحاسمة  الضرورة  البحث  هذا  يتناول 
نظام   دمج  شملت  خلال  استقصائية  دراسة  سلطت  الاصطناعي.  الذكاء  مع  القائم  في    237التشخيص  مشاركاً 

الطوارئ   حالات  أثناء  الموقع  في  البقاء  فترات  لتقليل  الأساسية  الحاجة  على  الضوء  السعودية  العربية  المملكة 
بين المشاركين بشأن الدور المحوري للذكاء الاصطناعي في تسريع الاستجابات، كما  ، مع اتفاق بالأجماع  القلبية

الدراسة  تقترح  الشاملة.  الخلفية  فهم  في  يساهم  مما  المشاركين،  اتجاهات  حول  رؤى  الديموغرافي  التحليل  يوفر 
نموذج  على  والتدريب  البيانات،  زيادة  ذلك  في  بما  الأساسية،  العناصر  تشمل  وتطوير  ResNet50  منهجية   ،

. تم تصميم مساعد الذكاء الاصطناعي هذا  DeepSTEMIمساعد الذكاء الاصطناعي سهل الاستخدام المسمى  
( القلب  عضلة  باحتشاء  التحديد  وجه  على  يظهر  STEMIالتنبؤ  الأولي.  للعلاج  والاستجابة  معينة  من صور   )

 98.0والتي تبلغ  (  AUCالنموذج باستمرار دقة عالية وتؤكد المنطقة التي تم التحقق من صحتها تحت المنحنى )
والحالات العادية. ومن أجل التعامل   (STEMIعلى براعة النموذج التمييزية في التمييز بين احتشاء عضلة القلب ) 

القلب مشاكل  من  واسعة  مجموعة  الهلال مع  هيئة  مع  والتعاون  للنموذج،  المستمر  بالتطوير  الدراسة  توصي   ،
الفعلي   البيانات في الوقت  المستمر وتدفقات  التعلم  الأحمر السعودي. تؤكد الدراسة أيضاً على مدى أهمية دمج 

 لتحسين دقة التشخيص.  
، هيئة الهلال الأحمر السعودي، خدمات الطوارئ قبل المستشفى، التعلم ـــ احتشاء عضلة القلبالكلمات المفتاحية

 العميق.   
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