
JKAU: Comp. IT. Sci., Vol. 11 No. 2, pp: 1 – 24 (1444 A.H. / 2022 A.D.)

DOI: 10.4197/Comp.11-2.1

The journal of King Abdulaziz University (Computing and Information Technology Sciences)

is licensed under a Creative Commons Attribution 4.0 International License (CC-BY 4.0).

1

Agent-based Intelligent Tutoring System

for Arabic Grammar

Sumayah Natheer1, Hanan Elazhary1,2 , Haneen Al-Ahmadi1
1Dept.Computer Science & Engineering

University of Jeddah, Saudi Arabia
2 Electronics Research Institute, Cairo, Egypt

sahmed0023.stu@uj.edu.sa, helazhary@uj.edu.sa, hhalahamade@uj.edu.sa

Abstract. an Intelligent Tutoring System (ITS) gives tailored teaching to students based on their learning preferences

and/or skills to address the problems of learning. These include the difficulty of providing quality learning to students

in remote areas, which may be hard to reach by students and/or teachers. Additionally, tracking the progress of each

individual student and providing suitable learning material and exercises is not an easy task. One of the best candidates

for such systems is Arabic grammar, which is a quite complex subject. Nevertheless, due to this complexity it hasn’t

been adequately handled by researchers. Also, those systems have generally been developed for elementary-level

grammar courses. Thus, this paper aims to develop an intelligent tutoring system to address problems of learning

Arabic grammar and make education reachable anywhere based on self-paced learning. The system is developed for

an Arabic grammar course at the University of Jeddah. An intelligent agent is a pack of software tools to be merged

with various applications and databases to facilitate their operation by making them modular. They also facilitate

modification and extension of any ITS without having to rebuild it from scratch. Though agents have been integrated

in Arabic grammar tutoring systems, to the best of our knowledge, no framework or methodology has been proposed

for developing such agent-based grammar ITSs. We attempt to address this problem in this paper.

Keywords—Agents, Arabic Grammar, Intelligent Tutoring System

I. INTRODUCTION

In traditional education, the students and

teachers must attend school, but many remote

areas are very difficult to reach by qualified

teachers, and the distance to school and high

transportation costs may lead to illiteracy. In

addition, the students have different skill levels,

and there is difficulty in tracing student errors

individually by the teacher [1]. Modifying

traditional tutoring to meet student needs is

costly and resource wasting. Intelligent Tutoring

Systems (ITSs) provide a solution to those

problems. An ITS provides content, exercises,

and feedback to learners. The primary advantage

of ITSs is their ability to interact with learners

one-to-one and personalize the instruction and

exercises according to their backgrounds and

progress.

Ideally, ITSs should contain the domain's

concepts, rules, and problem-solving strategies.

In addition to providing this material to learners,

they should be able to analyze the students’

answers to exercises to detect any errors using

techniques such as model tracing and

constrained-based modeling (CBM). By

assessing the students’ knowledge, they should

generate feedback and learning material and

exercises relevant to individual learners. In other

words, ITSs should have adaptive capacity to

modify feedback and suggested exercises to

guide learners to comprehend the presented

materials. Besides, ITSs should deliver data and

analyses to teachers and developers who are

aspiring to enhance teaching practices and

methods.

ITSs have been developed for various domains

including mathematics, languages, computers,

and physics. The Arabic language is a Semitic

language spoken by hundreds of millions

worldwide and in the Middle East. The main

mailto:sahmed0023.stu@uj.edu.sa
mailto:helazhary@uj.edu.sa
mailto:hhalahamade@uj.edu.sa

2 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

difficulty in learning the Arabic language is its

grammar, which is generally harder than that of

many other languages such as English. This

makes Arabic grammar a suitable candidate for

ITSs. Nevertheless, this complexity led to a

shortage in such ITSs. Thus, one of the goals of

this paper is to address this problem. Unlike

related ITSs that are generally developed for

elementary school Arabic grammar, the proposed

ITS handles a course at the University of Jeddah.

Intelligent agents provide packs of software tools

that can be merged with applications to facilitate

their operation and modification by making them

modular. Though agents have been integrated

with Arabic grammar tutoring systems, to the

best of our knowledge, no framework or

methodology has been provided to guide

development. We attempt to address this problem

by exploiting intelligent agents in the

functionality of the proposed ITS, while

providing a framework for developing such ITSs

using agents. To sum up, our main objective is to

develop an agent-based ITS for university-level

Arabic grammar and a systematic methodology.

Towards achieving this goal, several sub

objectives to be achieved include: (1) analyzing

a university-level Arabic language grammar

course, defining related linguistic skills and sub-

skills, and then arranging and sorting them, (2)

preparing a set of exercises and relating them

with appropriate skills and sub-skills, (3)

designing and developing an agent module, a

skill module, and a database module using

Prometheus design tool (PDT) and JADE, and

finally (4) developing a web-based ITS for

Arabic language grammar.

The contributions include (a) developing an ITS

for a university-level Arabic grammar course that

has not been handled before, (b) delivering a

methodology and framework for analysis and

design of agent-based ITS for Arabic grammar

(and possibly other domains), and (c)

implementing this ITS to help the students and

teachers gain maximum advantages of Arabic

grammar tutoring. To the best of our knowledge,

no previous efforts have been conducted for

associating PDT with Arabic grammar ITS, and

its development using JADE. Although agent-

based ITS for Arabic grammar is not a new issue,

it is a problematic issue that calls for further

research because it is still in its infancy. We

provide a novel approach for integrating agents

in the functionality of the ITS.

The next sections of the paper are organized in

the following way: First, the paper provides

detailed background and comprehensive

literature review related to the topic. This is

followed by specifying the research methodology

and the proposed design of agent based ITS for

Arabic grammar. Finally, it presents the

implementation of the proposed ITS, discussion,

conclusion, and future work.

II. BACKGROUND

This section presents background about both

ITSs and intelligent agents.

A. Intelligent Tutoring Systems

The fundamental goal of original intelligent

computer-aided instruction or later ITSs is to

develop and advance models of tutoring and

instruction aiming to grant students state-of-the-

art academic tutoring, using a suitable human

teaching strategy, on a one-to-one basis. The

early ITSs were proposed in the 1970s [2] aiming

at granting academic engagements that are

customized and tailored to weaknesses,

strengths, and the learning style of a given

student. Although ITSs can use AI in their

operation, the significant difference that makes

ITSs unique is the prediction of the state of the

learner knowledge and acting accordingly. In the

following subsections, we discuss typical ITS

architecture and student modeling techniques.

 Typical ITS Architecture

Typically, an ITS is formed using three modules:

domain knowledge, instructing knowledge, and a

model of learner's knowledge state. Dede [3]

refers to those modules as knowledge base,

pedagogical module, and student model

respectively. Recently, a fourth module, which is

the user interface, has been proposed due to the

Agent-based Intelligent Tutoring System for Arabic Grammar 3

growing interest in allowing communications

and conversations among learners and gadgets

[4].

Knowledge Base or Expert Module: This base

articulates the domain knowledge in terms of

declarative knowledge reflecting ‘knowing what’

and procedural knowledge reflecting ‘knowing

how’. Several schemes are utilized to represent

domain knowledge. These include lists, trees,

semantic networks, frames, production rules,

logic, and variations or mixtures of them. The

most frequently used method for this purpose is

the production system that comprises: (1) a

production set of if-then rules or procedural

memory, (2) a collection of facts or declarative

memory, (3) a working memory, and finally, (4)

an interpreter that applies the production rules to

solve a given user problem. Production systems

are generally utilized in expert systems, which in

turn, were utilized to implement the knowledge

bases of earlier versions of ITSs. For example,

GUIDON executed the MYCIN expert system as

its knowledge base [5, 6].

Pedagogical Module: Teaching is regarded as a

knowledge-based skill that is conducted using

specified techniques and strategies selected and

actively merged together in response to the

learner's actions. Therefore, the pedagogical

module should incorporate several skills,

including the presentation method, selection of

exercises, the balance among teacher and student

control, and should encompass feedback

whenever required or applicable. A significant

role of a pedagogical module is the way it

responds to student errors. The teaching

techniques and strategies are supposed to be

validated successfully so that the pedagogical

module becomes capable of successfully

responding to the learner's errors.

Student Model: This model provides the

student's current state of knowledge by

representing facts, concepts, and problem-

solving skills that the student has acquired either

fully or partially. The student model is generally

developed and updated through answers to

exercises provided to the student by the system.

This requires implementing a mechanism to

inspect bugs, misconceptions, inaccuracies, and

erroneous information acquired by the student.

This data should be collected and analyzed to

deliver optimum teaching interventions for

intelligent and effective student tutoring.

User Interface: is an important aspect of any

successful ITS. Although the other three parts are

idealistic, a successful interface makes an ITS

usable and useful. Despite the difficulties, an

interface should be built in a natural language for

better communication while utilizing advanced

AI techniques, by implementing controlled

language, multiple-choice selection, and graphic

interfaces. Finally, the user interface should

consider the memory limitations of learners and

the capabilities of man information processing

[7].

 ITS Student Modeling Techniques

This subsection discusses some of techniques

employed by ITSs for student modeling.

Overlay Model [8], [9]: This model was

developed in 1976. Since then, it has been one of

the most widely adopted student models, and

numerous ITSs have employed it. It is based on

the idea that student knowledge is a subset of

domain knowledge. To decide whether or not the

student has a knowledge gap, a comparison is

conducted between their conduct and behaviour

and that of the domain. The objective is to

minimize the distance between them as a

consequence.

Towards this goal, a straightforward overlay

model comprises a set of domain knowledge

items and employs a Boolean value to indicate

whether or not the student is familiar with each

of those items. The contemporary overlay

approach estimates the degree of the student

knowledge quantitatively using, for example, a

Likert scale (good, average, or poor) or

probability. The benefit of employing this

strategy is that it enables increasing student

understanding up to an appropriate level. The

drawback of employing it, on the other hand, is

that a student might approach a topic in a

different way. It ignores the students’ incorrect

4 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

knowledge, as well as their requirements and

learning preferences. This is the justification

behind the fact that the majority of ITSs aiming

at individualized tutoring also incorporate, in

addition to this model, stereotypes, fuzzy

techniques, and others as supplementary

techniques for student modeling.

Stereotypes Model [10], [11], [12]: This is

another approach that is widely used for student

modeling. It was first proposed and employed in

a system called GRUNDY. This model has been

described as follows: "A stereotype represents a

collection of attributes that often co-occur in

people. They enable the system to make a large

number of plausible inferences on the basis of a

substantially smaller number of observations.

These inferences must, however, be treated as

defaults, which can be overridden by specific

observation."

This approach is based on a basic assumption

regarding the possibility of grouping students

according to shared features. These groups are

what we refer to as stereotypes. The features of a

new student will be compared to those of the

different stereotypes and in case a match is found,

the student will be assigned to the corresponding

stereotype group. This approach is quite similar

to classification problems in machine learning.

ITSs generally select, generate, and sequence

learning material for the students, taking into

consideration their current knowledge and errors.

Nevertheless, most ITSs also allow students to

decide what they learn and what path to follow in

the courseware. This implies that the student can

select too hard or too easy parts of the courseware

as needed. They may also skip some parts of it.

This approach has two main advantages. The first

is that it can provide students with suitable

individualized learning material and experience,

while the second is that it overcomes the cold-

start problem of a student model (how to start a

new student model), since each such student will

be automatically assigned to the matching

stereotype group, inheriting its model.

Constraint Based Model [13], [14]: This model

was first proposed to analyze the current states of

students, based on their solutions, and represent

their short-term knowledge. To achieve this goal,

CBM represent both domain knowledge and

student knowledge using a set of constraints. In

order to assess the knowledge level of a student,

the student is provided an exercise and the

solution is diagnosed first by considering the

constraints one by one and matching their

relevance conditions to the solution (to figure out

which constraints apply). This is followed by

matching the satisfaction conditions of the

relevant constraints (to figure out whether they

are satisfied). Using this approach, the ITS

examines each individual step taken by the

student, and in case any errors are detected, it

provides feedback to the student using error

messages. This feedback ideally informs the

student that there is an error, specifies the

location of this error in the answer, and explains

the violated constraints to help in tutoring.

The prominent advantages of CBM include the

fact that it eliminates the need for an expert

module, leading to easier and faster design and

implementation of an ITS. Additionally, it

provides a systematic technique for identifying

students’ bugs and the origins of their errors. In

other words, it eliminates the need of complex

analysis and reasoning to identify errors and their

origin. This explains the reason that the CBM

approach is widely used in ITSs in a variety of

domains.

B. Intelligent Agents

Agents are generally described as self-managed

software programs more like automatic

machines. The interactions among agents can

either be supportive or selfish. In other words, an

agent can follow its own benefit or could share a

collective goal with its counterparts [15]. In this

subsection, we discuss agent characteristics,

architectures, and how they can be exploited.

 Agent Characteristics

Agents are generally characterized by four

attributes [16] discussed in this subsection.

Agent-based Intelligent Tutoring System for Arabic Grammar 5

Autonomy: Agents can activate themselves

without explicit involvement of individuals or

systems, and they have the ability to control their

states and the actions they take.

Social Ability: Agents use Agent

Communication Language (ACL) to

communicate with their counterpart agents and

possibly humans.

Reactivity: Agents are aware of their

environments and have the ability to respond on

time to any changes occurring within them.

Pro-activeness: Proactive agents perform

actions based on prediction by following the

belief–desire–intention software model. In this

model, belief reflects how the agent models its

environment, desire represents what the agent

aims to do or simply its goal, while the intention

reflects the action selected by the agent

accordingly.

 Agent Architectures

Agents have different possible architectures [17].

This section discusses four major types.

Simple Reflex Agents: The term ‘percept’ refers

to what an agent perceives. All what a given

agent perceives until present time is called the

percept history of the agent. Simple reflex agent

forgets this history and considers only the current

percept when taking an action. Meanwhile, it

relies on a set of condition-action pairs to decide

what the next action should be. Whenever the

condition of a given rule is satisfied, the agent

takes the corresponding action, thus changing its

state. Success of this approach implies that the

environment of the agent is fully observable.

Accordingly, if the case of a partially observable

environment, infinite loops are inevitable (since

the agent has no matching rule to change its

state). To tackle this problem, the agent may

randomize its actions. Problems of such agents

include:

- inadequate intelligence

- deals only with current percepts

- large storage capacity needed for the fully

observable environment

- the need to update the set of rules with any

change in the environment

Model-based Agents: A model-based agent

relies on a model of the world to be able to take

actions in a partially-observable environment. In

other words, it addresses the main issue of the

simple reflex agent. With any percept, and based

on the whole percept history, it takes an action to

adjust its current state. This state is stored inside

the agent using a structure describing the unseen

portion of the world. In order to update its state,

the agent needs information about:

- the world model and how the world evolves

independent of the agent

- how the actions taken by the agent affect the

world model

Goal-based Agents: Those agents focus on their

goals, and their decisions are formulated

according to how much away they are from the

goals (description of desirable situations). These

agents are more resilient since they can explore

various options and select the most suitable. They

are proactive rather than simply reactive in their

decision-making.

Utility-based Agents: These agents are

developed with the end uses in mind. They are

used to select the best alternative among a set of

possibilities based on users’ utilities or

preferences. For example, in case of numerous

possible paths to a destination, the preference can

be the fastest, the safest, or the cheapest. This is

expressed in terms of agent happiness, which is

described as a utility. The agent takes the action

that maximizes the utility. Utility functions map

any state to a real number as a measure of the

degree of happiness.

Learning Agent: This agent can learn by

experience. It starts with its basic knowledge and

takes actions accordingly. Nevertheless, through

learning it adapts automatically. To achieve this

goal, such agents generally have four

components:

6 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

- Learning component: responsible for

learning by experience from the environment

- Critic component: uses performance metrics

to provide feedback to the learning

component regarding how well the agent is

performing

- Performance component: selects the suitable

action based on the agent’s performance

- Problem generator: suggests actions for new

and informative experiences

 How to Tell an Agent What to Do

Agents accomplish tasks for us. In order to get

the tasks done, we need, in one way or another,

to identify a task that is to be accomplished and

communicate it to the agent. The questions now

are how to identify the tasks and how to express

to the agent what is required. The method that

comes directly to our minds is to write a program

for the agent to execute. The clear benefit of this

approach is that it eliminates uncertainty

regarding what we want the agent to accomplish,

since it will take necessary actions to follow our

instructions and only our instructions.

Nevertheless, the problem is that we have to plan

carefully how the task will be performed by the

agent and have to take into consideration all

possible circumstances, or else, if unexpected

ones occur, the agent will not execute as required

and will be unable to respond accordingly.

Therefore, typically, we tell the agent what to do

without telling it how to do it. This can be

achieved by defining the tasks indirectly and

utilizing some type of performance measure.

III. LITERATURE REVIEW

This section discusses related work including

agent-based ITSs, grammar ITSs, and agent-

based grammar ITS (a combination of the former

types).

A. Agent-Based Intelligent Tutoring Systems

In this section, we discuss some agent-based ITs

describing how they employ agents in their

architectures.

Remote Intelligent Tutoring System (RITS)

[18]: This system has been developed as an

environment through which students can learn

one or more subjects, by acquiring not only

tutoring material, but also assessments to solve,

accompanied by timely feedback as needed.

Agents in RITS are divided into three layers. The

first layer is the user interface agent responsible

for communicating with the students. The second

layer is responsible for generating tutoring

materials using key-points learning agent, test

and assessment agent, and a set of automatic

problem-solving agents. Finally, the third layer is

the control layer comprised of two agents, one

responsible for control of learning and

assessment and the other responsible for control

of automatic problem solving.

Intelligent Tutoring System with Emotional

Pedagogical Agents [19]: This ITS is formed of

a set of modules in addition to emotional

pedagogical agents for better interaction between

students and the ITS. The modules are the user

interface, the student model, the domain

knowledge, and pedagogical knowledge maps

that map a set of knowledge concepts to a set of

knowledge descriptions. The student model

reflects student’s characteristics such as

knowledge level, cognitive abilities, learning

style, and psychology. The emotional

pedagogical agent recognizes student’s

expressions, analyzes corresponding emotions,

and communicates with both the student model

and knowledge map to generate relevant

personalized tutoring material to the student.

FlexiTrainer [20]: This is an ITS authoring

framework. It provides a set of tools to aid in

specifying domain knowledge (principles, skills,

and tasks), exercises, student model based on

Bayesian inference, and tutor behaviour

(teaching and assessment strategies under

different conditions). This latter editor specifies

visually the behaviour of tutoring agents to carry

out the educational goals. FlexiTrainer has been

successfully used to develop an ITS for tutoring

flying skills to helicopter pilots.

MathTutor [21]: This is another multi-agent ITS

authoring tool. It utilizes a set of formalisms to

Agent-based Intelligent Tutoring System for Arabic Grammar 7

facilitate the task of specifying domain

knowledge, student model, and the pedagogical

model implemented as expert system rules. In

addition to the teacher authoring interface, it

provides a student user interface and a set of

tutoring agents. Each agent is controlled by a

coordinator module. Based on the expert system

rules and the student model the suitable learning

material is generated from the domain

knowledge. The result of an interaction may

result in an update to the student model.

Feedback is also provided to the student as

needed. Control may transfer from one agent to

another in case the student needs to move to an

advanced level or another curriculum for

example. The tool utilizes Petri net for the

interaction between the various agents and the

students.

A Multi-agent ITS for Learning Computer

Programming [22]: This is an ITS for computer

programming based on multiple agents. It relies

on teaching the students several programming

languages based on the assumption that teaching

supporting domains in addition to a target

domain reinforces learning especially in

knowledge-rich domains like computer

programming. It utilizes two types of agents in

each domain bank: searching agent and conveyor

agent. The former is responsible, as the name

implies, for searching the corresponding bank.

The latter, on the other hand, is responsible for

communication among agents.

The above systems utilized different types of

agents and various architectures for developing

agent-based ITSs. Nevertheless, none of them

was intended for grammar tutoring. In this

research study, we aim to develop an agent-based

ITS suitable for this domain in particular. Similar

to some of the above systems, we also aim at

developing a systematic method for helping

researchers design and implement similar ITSs.

Additionally, we will take into consideration the

functionalities of the above systems and agents

such as domain knowledge, pedagogical module,

student model, user interface, learning and

assessment, databases, and feedback.

B. Grammar Tutoring Systems

Grammar tutoring systems or Language Tutoring

Systems (LTSs) have been established for several

languages. They differ in their capabilities,

strategies, student models, and linguistic skills.

This section presents some of these systems.

Web-based Intelligent Language Tutoring

System for German Grammar [23]: This web-

based ITS is developed for a grammar course in

German. Its intelligence is exhibited in its

capability to parse students’ inputs. In response,

students may be given relevant feedback and

possibly suggested exercises. To evaluate the

ITS, 19 college students sat for a one-hour test.

In this test, 84% of those students thought that the

ITS was useful and reliable due to supplying

them with instant remarks and free grammar

exercises.

English Tutor Using Data Mining Techniques

and Jackson’s Learning Styles [24]: This is an

online English grammar ITS, which takes into

consideration learning styles when presenting

learning material. It has a database layer storing

the student model, which is updated according to

the students’ behavior. The second application

layer contains learning material to be presented

to the students, videos, and exercises. Finally, the

last client layer is the user interface targeting the

students and the system administrator.

According to Jackson’s learning styles, there are

four basic phases in learning: speaking, grammar,

writing, and reading. These phases must be

studied, and their quizzes taken by each student

in any order they prefer. This implies 24 different

possible learning patterns. Data mining

techniques are exploited to cluster students’

learning styles according to this model.

Experiments were conducted to figure out,

among the 24 patters, the most common and the

most successful. The experiments showed that in

both cases, the pattern was speaking - reading -

grammar - writing, with scores of 87.4% and

higher.

AG Tutor [25]: This is an ITS for teaching

Arabic grammar to students at the fourth grade of

elementary schools in Egypt. Domain knowledge

covers several corresponding lessons. Linguistic

8 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

skills are identified under each lesson with

corresponding questions. Additionally, CBM is

utilized to define a set of constraints representing

grammar rules under each skill. The advantage is

that this eliminates the need for a bugs’ library.

To model the student, after answering each

question, a list of satisfied and violated

constraints is updated. Suitable questions are

generated accordingly. AG Tutor has a graphical

user interface with multimedia to ease the

interaction with the students and make it

interesting to them.

Arabic Intelligent Call (ICALL) [26]: This ITS

is intended to teach the Arabic language to

Egyptian school students in their first year in

addition to foreigners learning Arabic as a second

language. ICALL has been developed through a

number of versions for this purpose. It provides

exercises to the students and allows them to write

answers as solutions to them. Based on stored

model answers and morphological, syntax and

error analyzers, it is able to detect and specify any

errors in the answers and provide relevant

feedback in response. In the case of failure of

such approach, a set of buggy rules is exploited

for parsing ill-formed input sentences. This is in

addition to a number of constraints to locate and

diagnose incorrect verbs.

The above ITSs have different architectures and

target grammar tutoring in various languages

including Arabic emphasizing the need for a

systematic approach to develop grammar ITSs.

Meanwhile, it is clear that there is a shortage of

ITSs for Arabic grammar. The proposed research

aims to address both issues by developing agent

based Arabic grammar tutoring system and

providing a framework for developing similar

ITSs.

C. Agent-Based ITS For Grammar

This section discusses an ITS which is most

similar to ours since it employs agents in its

operation and tutors students Arabic grammar.

AG Tutor [27]: This is an enhanced version of

the original AG Tutor discussed above [25],

which is intended to teach Arabic grammar to

fourth grade students at elementary schools in

Egypt. It has been modified by integrating it with

a number of agents. The learning material is

organized in a prerequisite structure according to

lessons and sub-lessons or topics and sub-topics.

Questions are added by the system administrator

such that each question belongs to exactly one

sub-topic. This system is first structured into four

modules: pedagogic module (providing learning

material), question selector module, student

module (using CBM to diagnose student answer

and specify satisfied or violated constraints), and

interface module. A set of five agents are then

used to connect those modules together. These

are teaching assistance agent (including expert

module and pedagogy), constraints and hints

agent (working with the student module to

generate suitable hints based on satisfied/violated

constraints), learning strategy environment agent

(to adapt learning strategy), secretary agent

(updating student model and specifying next

action based on it), and finally, an interface agent

for interaction with users.

The problem with this research is that it does not

provide any details of how the system has been

designed and how the functionality has been

distributed among the various modules and

agents. Additionally, no examples have been

provided demonstrating the use of CBM. The

same is true about adapting the learning strategy

of the students. The fact that the learning material

is organized according to lessons and sub-lessons

and that questions are added by the system

administrator such that each question belongs to

exactly one sub-topic implies that the system is

inflexible and cannot be easily modified. Finally,

the system is intended for elementary school

students.

The proposed ITS tries to address those issues by

providing a framework for designing agent-based

grammar ITSs and distributing the system’s

functionality among intelligent agents.

Accordingly, the system is structured mainly

using agents realizing its modules, rather than

modules connected by agents as in agent-based

AG tutor. The learning material is organized into

skills and sub-skills rather than topics and sub-

topics to be more flexible. To increase flexibility

Agent-based Intelligent Tutoring System for Arabic Grammar 9

even further, it allows teachers and/or

administrators to specify skills and subskills and

add questions through the user interface. Finally,

the system addresses a university-level Arabic

grammar course. The use of CBM to diagnose

students’ errors and provide relevant feedback is

postponed to future versions. In the current

version, the learning material organization into

skills and sub-skills facilitates this task via

corresponding error messages.

To sum up, the literature review discussed above

showed a shortage in ITSs for Arabic grammar

though Arabic is a Semitic native language of

about hundred million around the globe. Besides,

Arabic grammar is generally a complex subject

that needs ITSs. This tempted us to propose an

agent-based ITS for Arabic grammar. As shown

in Table 1, unlike its counterparts developed for

elementary school Arabic grammar, the proposed

system is developed for a university-level course.

Specifically, the material is a course offered by

the University of Jeddah. To the best of our

knowledge, this is the first ITS for this course.

The learning material is organized into skills and

sub-skills rather than topics and sub-topics to be

more flexible and to facilitate updating the

student model and providing feedback in absence

of domain knowledge. It is also designed to allow

teachers and/or admins to define the material

organization and add questions rather than only

admins like its counterparts. Finally, we provide

a framework for systematic design of agent-

based grammar ITSs and for distributing the

system’s functionality among intelligent agents.

Utilizing CBM to represent domain knowledge,

diagnose student answers and provide relevant

feedback will be implemented in future versions.

This will also help in extending the student model

by defining it in terms of violated and satisfied

constraints in addition to satisfied and unsatisfied

skills and sub-skills (as in the current version).

IV. METHODOLOGY

The research methodology consists of four main

steps as shown in Fig. 1.

The first step is formulating the proposed

framework using three modules: agent module,

skill module and database module. This is

followed by analyzing and designing the

proposed system using PDT. The third step is

implementation of the system using JADE. The

last step is providing the discussion and

conclusion, in addition to directions of future

research to complete the system.

TABLE I. COMPARISON OF THE PROPOSED SYSTEM AND THE MOST

RELATED SYSTEMS

Fig.1. Research methodology steps

A. Proposed Framework

As shown in the block diagram in Fig. 2, the

proposed ITS is composed of three modules: an

agent module, a skill module, and a database

module. The database module consists of Student

DB and Question DB for students and questions

respectively. The agent module, in turn, consists

of four agents: question agent, teacher agent,

student agent, and user interface agent.

Features ICALL [26]
AG tutor

[27]

The proposed

system

Learning

material

primary

schools
fourth-grade university course

Agent based

Organization by topic
by topics and

sub-topics

by skills and sub-

skills

Adding

questions
by admin by admin

by teacher or

admin

Domain

model

10 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

The learning material of the proposed ITS is an

Arabic grammar course taught at the University

of Jeddah. The proposed system is the first ITS

developed for this course. Its material is divided

into skills and sub-skills of Arabic grammar. For

example, as shown in Fig. 3, the verb form

changes based on subject type in Arabic

language. Accordingly, we divided the past verb

skill into sub-skills based on subject type:

masculine or feminine, and singular, dual, or

plural.

 Database Module

The database module consists of two different

databases, which are Question DB and Student

DB for the questions and the students

respectively as shown in Fig. 4.

Fig. 2. Block diagram of the proposed system

The Question DB consists of a group of questions

to assess various skills and sub skills such as

verbs, nouns, and particles. Under the verbs, for

example, the questions can assess past tense,

present tense, instruction verbs.

The Student DB, on the other hand, contains data

about the students such as student ID, name,

major, and level. This is in addition to passed

skills and sub-skills or their current scores.

Fig. 3. Skill and sub-skills example of past verb

Fig. 4. Database module design

 Agent Module

The agent module consists of four agents:

question agent, teacher agent, student agent, and

user interface agent. The benefits gained from

utilizing agents in our ITS can be summarized as

follows:

- Using agents is time-saving since they

shorten the required time for building a new

ITS.

Agent-based Intelligent Tutoring System for Arabic Grammar 11

- Agent design is flexible; changeable without

changing the whole system coding.

- As previously noted, an agent in Agent-

Oriented Programming (AOP) has a degree

of autonomy. Agents can know when to do a

given behaviour and how and when to

interact with other agents without external

interaction. This is unlike Object-Oriented

Programming (OOP), in which the object is

completely controlled by the programmer.

The programmer decides when an object is

created, what the object can do, when the

object can do a given behaviour and when to

interact with other objects and how.

The goals and responsibilities of the agents in the

agent module are provided in Table 2. As

indicated in the table, through the user interface,

the teacher, aided by the teacher agent,

defines/modifies the Arabic grammar skills and

sub-skills that are part of the domain knowledge.

TABLE II. AGENTS' GOALS AND RESPONSIBILITIES

Questions are also added and attached to the

relevant sub-skills, in addition to rules for

passing a given skill or sub-skill and for

providing questions accordingly. Questions are

stored in the Question DB, while the rules are

stored in the skill module. This information is

part of the pedagogical module of the ITS. The

teacher also adds the students to the ITS by

creating an account for each student. This

information is stored in the Student DB. This

database also stores for each student information

regarding passed skills and sub-skills or

corresponding scores, following the overlay

student model.

Through the user interface, the student logs into

the system to solve the questions of the first

primary skill. Under this skill, the questions of

the first sub-skill must be correctly solved (or a

certain percentage of them as defined by the

teacher in the skill module) before being moved

by the system to the next sub-skill. This

continues until all sub-skills of the primary skill

are passed. Control then moves to the next skill.

The student agent calculates the student score for

each skill and sub-skill based on solutions to

provided questions. This information is

communicated to the skill module to determine

current sub-skill. The user interface agent records

skills and scores of the students.

Finally, the question agent, is responsible for

providing questions to the student and

determining next question under current sub-skill

guided by information received from the skill

module.

 Skill Module

The skill module simulates the instructor in

tutoring. To achieve its goals, it interacts with

both the student agent and the question agent. It

takes students’ score as input from student agent

to determine the current students’ sub-skill by

applying two rules. It then sends the current

student sub-skill to the question agent to provide

an appropriate question. As shown in Fig. 5, the

rules it uses are as follows:

Fig. 5. Rules of skill module

Skill passing rule: This rule will apply if

students’ answer to a given question is correct.

Agent Goals and Responsibilities

User

Interface

Agent

 provides an interface available for the users to

interact easily with the system over the network

 interacts with the other agents

 records student skills and scores

Teacher

Agent

 adds/modifies skills, sub-skills, and questions in the

Question DB

 defines rules for passing skills and providing

questions

 creates a student account and saves it in Student DB

Student

Agent

 calculates the student score for each skill and sub-

skill based on solutions to provided questions

 defines the student's progress

Question

Agent

 determines the next question based on the student's

sub-skill

 provides a question to the student based on the

student's sub-skill

12 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

The percentage of passing each sub-skill is

determined by the teacher as previously noted.

The student must achieve the percentage of

current sub-skill to jump to next sub-skill and/or

next skill. The current students’ sub-skill will be

sent to the question agent to determine next

appropriate question.

Question providing rule: This rule will apply if

the student fails to solve the question. This rule

makes the question agent provide another

question under the current sub-skill.

B. Analysis and Design using Prometheus

Design Tool

The proposed framework follows Prometheus

methodology for analysis and design of the

grammar ITS. This is achieved through three

phases: system specification (as an initial pre-

design stage), architectural design, and then

detailed design. As shown in Fig. 6, there are

three types of diagrams corresponding to the

three phases: the first type is dynamic diagrams

(scenarios, protocols, and process), the second is

overview diagrams (system goals, system, agent,

and capability), and the third is detailed form

diagrams (agent, capability, event, data, and

plan).

To follow this methodology, we used PDT which

supports intelligent agent design via graphical

development that determines and specifies agent

entities [28]. Table 3 shows PDT symbols and

describes the meaning of each symbol and its role

in designing agent-based systems.

 System Specification

The system definition step begins with a high-

level system description, followed by the

identification of system goals and scenarios, and

a design analysis overview diagram. We

identified the percepts that are input to each

scenario, as well as the actions performed by the

system, in the analysis overview diagram (see

Fig. 7). For example, the teacher enters the

questions into the system as a percept (input), and

the system adds the questions to Question DB.

Also, when a student logs into the system, his

skill record is sent to the system as a percept and

the system responds by asking the student

questions depending on his skills. As a result, the

analysis overview diagram describes the system's

interface when it comes to percepts (inputs) and

actions (outputs).

The next step is specifying the details of the

scenarios that were identified in the analysis

overview diagram. A scenario is a collection of

structured phases, each of which might be a goal,

action, perception, or sub scenario. The designer

can also specify the roles at each step, and the

data accessible, as well as providing brief

explanation of procedures. We can start by

designing the system scenarios overview and

then specify the details of each scenario. The

scenarios overview diagram of the proposed ITS

consists of four main scenarios: create student

account scenario, skill/question adding scenario,

question providing scenario and skill

determining scenario. Each of these scenarios has

sub-scenarios as shown in Fig. 8.

PDT produces a goal for each scenario by default,

using a name that's the same as that of the

scenario, although this can be altered. This is the

goal that the scenario is aiming for. The goals

developed as a result of the scenarios are

generated and added to the goals overview

diagram (see Fig. 9).

The goals are organized roles that are divided

into coherent groups and assigned to agents.

They are designed to be compact, easy-to-define

chunks of agent capability. The percepts and

actions are then suitably assigned to the roles in

order for them to fulfil their goals. This is done

using the system roles diagram. For example, the

‘determine student skill' role is responsible for

the goals of analyzing student answers and

calculating the score, as shown in Fig. 10. To

fulfil these goals, the role requires student answer

as input, then the role performs the action of

‘Determine the skill’.

Agent-based Intelligent Tutoring System for Arabic Grammar 13

Fig. 6. Phases of Prometheus methodology [28]

TABLE III. THE PDT NOTATION SYMBOLS AND MEANINGS

14 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

Fig. 7. Analysis overview diagram

Fig. 8. Scenarios overview diagram

Agent-based Intelligent Tutoring System for Arabic Grammar 15

Fig. 9. Goals overview diagra

 Architectural Design

This phase is responsible for determining the

internal structure of the system. For example, the

agent role grouping diagram captures decisions

about role grouping into agents. Fig. 11 shows

the ‘create account’ role and ‘add skill/question’

role as part of a teacher agent. Also, ‘provide

interactive communication’ role as being part of

user interface agent which is responsible for

providing an interactive interface available for

the user to interact easily with the system over the

network.

Once decisions have been made regarding how

roles should be assigned, information can be

transmitted from the role specifications to

indicate for each agent the percepts and actions

associated with it. This data is automatically

populated into the system overview diagram,

which, once completed, offers a visual

representation of the internal system architecture.

To complete this overview, protocols

representing interactions between agents, as well

as any data they share should be identified. For

example, in our proposed system, the system

overview diagram (Fig. 12) shows that the

question agent receives ‘skill record’ as a percept

from student agent (through skill module). Then,

the question agent provides a question based on

student skill. It interacts with the student agent

via ‘providing question’ protocol. Similarly, the

question agent communicates with the teacher

agent via ‘adding question’ protocol.

 Detailed design

This phase focuses on the description of the

internal structure of the individual agent's tasks

and capabilities, as well as how each agent would

do its roles inside the system. The agent's

capabilities will match the roles that have been

allocated to it, albeit roles may be divided into

numerous finer-grained capabilities or combined

into a bigger capacity. As illustrated in Fig. 13,

the question agent has two capabilities: question

determination and question providing both

matching the corresponding ‘provide question’

role.

The teacher agent has two roles: create account

and add skill/question which are divided into

three capabilities: account creating, skill

adding/modifying, and question

adding/modifying as shown in Fig. 14. Similarly,

the roles of the student agent and the user

interface agent are divided into capabilities as

shown in Fig. 15 and Fig. 16 respectively.

16 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

Fig. 10. System roles diagram

Fig. 11. Agent role grouping diagram

Fig. 12. System overview diagram

Agent-based Intelligent Tutoring System for Arabic Grammar 17

Fig. 13. Question agent overview diagram

Fig. 14. Teacher agent overview diagram

Fig. 15. Student agent overview diagram

18 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

Fig. 16. User interface agent overview diagram

C. Implementation

Our proposed system is developed using Java and

PHP languages, in addition to MySQL database

management system. The Foundation for

Intelligent Physical Agents (FIPA) aims to

encourage the development of agents including

intelligent agents. Java Agent DEvelopment

Framework (JADE) version 2, which is a

middleware under standard FIPA, is used to

implement the agent module. This section

examines the implementation of the agent

module and the system interfaces.

 Implementation Using JADE

FIPA provides several containers for developing

agents. The container is an instance of JADE run

time comprising Java processes. A platform is a

collection of containers [29]. As previously

noted, an agent in AOP has a level of autonomy.

An agent knows when to do a given behaviour

and how and when to interact with other agents

without external interaction. This is unlike OOP,

in which the object is completely controlled by

the programmer. The programmer decides when

an object is created, what the object can do, when

the object can do a given behaviour and when to

interact with other objects and how this is

achieved. All agents in the proposed system were

implemented using similar steps. This section

presents some important methods used in the

implementation of question agent as an example.

Firstly, Question_Agent was created and added to

the JADE environment by implementing the

setup() method as indicated by the code below.

The setup() method is responsible for

Question_Agent initialization and for adding

behaviours to the agent. It is much like an object

constructor. The constructor is called

immediately after the object is created. Similarly,

the setup() method is called after the agent is

created.

Following that, we added behaviour to the

question agent, which is a task that the agent may

execute, and implemented it as an object of a

class that extends jade.core.behaviours. Each

class that extends behaviours must implement the

action() method, which specifies the operations

to be performed while the behaviour is in

execution. This is as well as the done() method,

which returns a Boolean value, to show whether

a specific behaviour has completed and should be

deleted from an agent's collection of behaviours.

Agent-based Intelligent Tutoring System for Arabic Grammar 19

As shown in the code below, for example, we

added OneShotBehaviour() to the code to make

sure that the action() method only runs once. The

action() method of Question_Agent performs the

task of sending INFORM message to the

Sudent_Agent. This implies that the sender

Question_Agent only wants to inform the

receiver Student_Agent about a fact without

making an action. A message can generally

request doing an action or can be merely a query.

Filling in the parameters of an ACLMessage

object and then calling the Agent class's send()

method is all it takes to send a message to another

agent. This communication among agents is

specified by Agent Communication Language

(ACL) defined by FIPA.

 System Interfaces

The interface of teacher home page is shown in

Fig. 17. The left-hand side of the figure shows the

active number of students and the number of

available training exams. The icons of other

related pages of the system appear in the right-

hand side. The teacher adds the skills followed by

their sub-skills via the skill adding page depicted

in Fig. 18. She also adds the questions and relates

them with skills and sub-skills via the question

adding page shown in Fig. 19. Students’ results

appear in the student result page shown in Fig.

20.

The student home page interface is illustrated in

Fig. 21, which shows all available tests and

passed tests on the left-hand side. The student can

start a test via the student test page shown in Fig.

22. Examples of correct and wrong answers of

students are shown in Fig. 23 and Fig. 24. All

tests’ results appear in the result page shown in

Fig. 25.

Fig. 17. Teacher home page

20 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

Fig. 18. Skill adding page

Fig. 19. Question adding page

Fig. 20. Student result page

Agent-based Intelligent Tutoring System for Arabic Grammar 21

Fig. 21. Student home page

Fig. 22. Student test page

Fig. 23. Correct answer

22 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

Fig. 24. Wrong answer

Fig. 25. Test result page

V. DISCUSSION

This paper provided an agent-based ITS for

university-level Arabic Grammar. The goal of

the system is to seize the student's knowledge and

skill level while the student is answering

questions, to provide suitable questions

according to weak areas. Towards this goal, we

inspected the problematic issue of analyzing

Arabic language grammar courses and defined

related Arabic linguistic skills and sub-skills to

attach them to suitable questions. This was

followed by proposing a suitable system

architecture consisting of different components

and modules such as agent architecture, skills and

sub-skills, grammar questions, databases, data

processing tools, and SQL.

The system integrated intelligent agents in the

design of the ITS to facilitate development and

future modifications. Meanwhile, the paper

provided a framework for developing such

systems in a systematic way using PDT and

JADE. Recommendations for success of such

systems can be summarized as follows:

1. Students have to be aware of the system

implementation since they will not be able to

move to the next skill or sub-skill unless the

current is fulfilled. This will be modified in

future versions.

2. Teachers have to be aware of using the

system by adding skills and sub-skills then

attaching them to suitable questions.

3. In addition to tutoring students, the proposed

system can provide teachers with a report of

each student, such as the scores of skills and

Agent-based Intelligent Tutoring System for Arabic Grammar 23

sub-skills, date and time of solving each

question, and tutoring status.

VI. CONCLUSION AND FUTURE WORK

In the future, the question bank will contain a

huge number of questions covering all groups of

questions such as Multiple Choices Questions

(MCQ), true/false, match the correct sentence

form, press on something, fill in the space with

the correct answer from a bracket, get out a verb,

a noun, or a particle, parse a sentence, reorder a

nominal sentence to be a verbal sentence and vice

versa, generate the plural, in addition to

providing plural or single form of a noun.

The system will also be improved to generate

questions using intelligent agents and to parse

free form sentences. CBM will be used to check

violated constraints and generate suitable

feedback. We would also like to make the system

globally accessible. This is of course in addition

to extending the system to cover the whole

Arabic grammar curriculum.

 REFERENCES

[1] M. Demeuse, and A. Baye, "Efficiency and equity in European

education and training systems," 2007, IP/-

B/CULT/FWC/2006_169.
[2] M. Wenger, "The restratification of higher education in

contemporary America: Dimensions and consequences," Humanity
& Society, vol. 11, no. 2, pp. 137-151, 1987.

[3] J. Dede et al., "Intelligent computer-assisted instruction: A review

and assessment of ICAI research and its potential for education,"
Educational Technology Center, Cambridge, MA, USA, 1985.

[4] I. Padayachee, "Intelligent tutoring systems: Architecture and

characteristics," in Proc. of Sacla Conference, Port Alfred, 2002.
[5] W. Clancey, "Tutoring rules for guiding a case method dialogue,"

International Journal of Man-Machine Studies, vol. 11, pp. 25-49,

1979.
[6] K. Butcher and V. Aleven, "Using student interactions to foster rule–

diagram mapping during problem solving in an intelligent tutoring

system," Journal of Educational Psychology, vo. 105, no. 4, p. 988,

2013.

[7] P. Sedlmeier, "BasicBayes: A tutor system for simple Bayesian

inference," Behavior Research Methods, Instruments, & Computers,
vol. 29, pp. 328-336, 1997.

[8] K. Chrysafiadi and M. Virvou, "Student modeling approaches: A

literature review for the last decade," Expert Systems with
Applications", vol. 40, no. 11, pp. 4715-4729, 2013.

[9] C. Carmona and R. Conejo, "A learner model in a distributed

environment," in Adaptive Hypermedia and Adaptive Web-Based
Systems, Springer, 2004, pp. 353-359.

[10] E. Rich, "Stereotypes and user modeling," in User Models in Dialog

Systems, A. Kobsa and W. Wahlster, Eds. Springer Berlin
Heidelberg, 1989, pp. 35-51.

[11] J. Kay, "Stereotypes, student models and scrutability," in Intelligent

Tutoring Systems, G. Gauthier et al., Eds. Springer Berlin
Heidelberg, 2000, pp. 19-30.

[12] A. Grubisic , S. Stankov and B. Zitko," Stereotype student model for

an adaptive e-learning system," in Proc. of World Academy of
Science, Engineering and Technology, vol. 76. 2013, p. 20.

[13] A. Mitrovic, "Fifteen years of constraint-based tutors: What we have

achieved and where we are going," User Modeling and User-
Adapted Interaction, vol. 22, no. 1-2, pp. 39–72, 2012.

[14] A. Mitrovic, M. Mayo, P. Suraweera, and B. Martin, "Constraint-

based tutors: A success story," in Engineering of Intelligent Systems,
L. Monostori et al., Eds. Springer Berlin Heidelberg, 2001, no. 2070,

pp. 931-940.

[15] H. Mouratidis, P. Giorgini, and G. Manson, "Modelling secure
multiagent systems," in Proc. of 2nd International Joint Conference

on Autonomous Agents and Multiagent Systems, Melbourne,

Australia, 2003, pp. 859-866.
[16] Y. Shoham, "Agent-oriented programming," Artificial Intelligence,

vol. 60, pp. 51-92, 1993.

[17] Agents and Artificial Intelligence, Proc. of 11th International
Conference of ICAART, J. Herik and A. Rocha, Eds., Prague, Czech

Republic, 2019.

[18] Y. Zhenzhen et al. "Remote intelligent tutoring system based on

multi-agent," in Proc. of 2nd International Conference on

Information Engineering and Computer Science, 2010.

[19] S. Yu, L. Zhiping, and X. Youming, "A model of intelligent tutoring
systems with emotional pedagogical agents," in Proc. of

International Conference on Computer Science & Education, 2012.

[20] S. Ramachandran, E. Remolina, and D. Fu, "FlexiTrainer: A visual
authoring framework for case-based intelligent tutoring systems," in

Proc. of International Conference on Intelligent Tutoring Systems,

2004.
[21] J. Cardoso et al., "MathTutor: A multiagent intelligent tutoring

suystem," IFIP Advances in Information and Communication

Technology, vol. 154, pp. 231-242, 2004.
[22] E. Sierra, P. Britos, D. Rodriguez, and R. Garcia-Martinez, "A

multi-agent intelligent tutoring system for learning computer

programming", in Proc. Electronics, Robotics and Automotive
Mechanics Conference, 2007, pp. 382-385.

[23] T. Heift and D. Nicholson, "Theoretical and practical considerations

for web-based intelligent language tutoring systems," in Proc. of
International Conference on Intelligent Tutoring Systems, 2000.

[24] Y. Tashtoush, "Adaptive e-learning web-based English tutor using

data mining techniques and Jackson's learning styles," in Proc. of 8th
International Conference on Information and Communication

Systems, 2017.

[25] N. Khodeir, M. Hafez, and H. Elazhary, "Multi-level skills-based
student modeling in an arabic grammar tutor," in Proc. of

International Conference on Advanced Control Circuits Systems,

2017.
[26] M. Al Emran and K. Shaalan, "A survey of intelligent language

tutoring systems," in Proc. of International Conference on Advances

in Computing, Communications and Informatics, 2014.
[27] M. Hafez, "A multiagents based intelligent tutoring system for

teaching Arabic grammar," International Journal of Education and
Learning Systems, vol. 3, 2018.

[28] L. Padgham and M. Winikoff, "Prometheus: A methodology for

developing intelligent agents," in Proc. of the International
Workshop on Agent-Oriented Software Engineering, 2002, pp. 174-

185

[29] F. Bellifemine, A. Poggi, and G. Rimassa, "Developing multi‐agent

systems with a FIPA‐compliant agent framework, Software:

Practice and Experience, vol. 31, no. 2, pp. 103-128, 2001.

24 Sumayah Natheer, Hanan Elazhary, Haneen Al-Ahmadi

 لتعليم قواعد اللغة العربيةام ذكي معتمد على الوكيل البرمجي نظ

 1، حنين الأحمدي 2 ،1 حنان الأزهري ، 1سمية نذير

 قسم علوم الحاسبات ، كلية العلوم و هندسة الحاسب 1
 الآلي، جامعة جدة، جدة ، المملكة العربية السعودية

 مصر ،القاهرة ، معهد بحوث الالكترونيات 2

sahmed0023.stu@uj.edu.sa, helazhary@uj.edu.sa, hhalahamade@uj.edu.sa

(تعليمًا مخصصًا للطلاب بناءً على تفضيلاتهم التعليمية و مهاراتهم في ITSيوفر نظام التدريس الذكي) .مستخلص

هذه المشكلات صعوبة توفير تعليم جيد للطلاب في المناطق النائية ، والتي قد يصعب التعلم. وتشملمعالجة مشكلات
الوصول إليها من قبل الطلاب أو المعلمين. بالإضافة إلى ذلك ، فإن تتبع تقدم كل طالب على حدة وتوفير المواد

نظمة ، اللغة العربية من أفضل المرشحين لمثل هذه الأوالتدريبات التعليمية المناسبة ليس بالمهمة السهلة. تعتبر قواعد
وهي مادة معقدة للغاية. ومع ذلك ، بسبب هذا التعقيد ، لم يتم التعامل معها بشكل مناسب من قبل الباحثين. أيضًا ، تم

طوير نظام لى تتطوير هذه الأنظمة بشكل عام لمادة القواعد النحوية للمستوى الابتدائي. وبالتالي ، يهدف هذا البحث إ
تعليمي ذكي لمعالجة مشاكل تعلم قواعد اللغة العربية وجعل التعليم قابلًا للوصول في أي مكان بناءً على التعلم الذاتي.
تم تطوير النظام لمادة قواعد اللغة العربية بجامعة جدة. الوكيل البرمجي الذكي عبارة عن حزمة من أدوات البرامج يتم

بيقات وقواعد البيانات لتسهيل تشغيلها من خلال جعلها معيارية. كما أنها تسهل تعديل وتطوير دمجها مع مختلف التط
دون الحاجة إلى إعادة بنائها من الصفر. على الرغم من أن الوكلاء البرمجيين قد تم دمجهم في أنظمة تدريس ITSأي

أو منهجية لتطوير أنظمة التدريس الذكية الخاصة قواعد اللغة العربية ، على حد علمنا ، لم يتم اقتراح أي إطار عمل
بقواعد اللغة العربية. نحاول معالجة هذه المشكلة في هذا البحث من خلال اقتراح بنية نظام مناسبة تتكون من مكونات

ام بدمج ظووحدات مختلفة مثل الوحدة التربوية ووحدة قاعدة البيانات ووحدة واجهة المستخدم والوكلاء البرمجيين. قام الن
عوامل ذكية في تصميم أنظمة التدريس الذكية لتسهيل التطوير والتعديلات المستقبلية. وفي الوقت نفسه ، قدم البحث

 ة منهجية.إطارًا لتطوير مثل هذه الأنظمة بطريق
 نظام التعليم الذكي. ،ـــ الوكيل البرمجي، قواعد اللغة العربية الكلمات المفتاحية

mailto:sahmed0023.stu@uj.edu.sa
mailto:helazhary@uj.edu.sa
mailto:hhalahamade@uj.edu.sa

