
JKAU: Comp. IT. Sci., Vol. 13 No. 1, pp: 68 – 84 (2024 A.D.)

DOI: 10.4197/Comp.13-1.4

68

Employing Sequence to Sequence Neural Network Model for

XSS Attack Detection

Mohammad Eid Alzahrani1

1Department of Computer Science, Al-Baha University

Al-Baha, KSA meid@bu.edu.sa

Abstract. Cross-site scripting (XSS) attacks are considered one of the most prevalent types of attacks and

have caused huge damage to individuals and organizations in the form of economic loss and intrusion into

privacy. Several detection techniques have been used to find known threats using signatures obtained from

network traffic. Researchers have developed many techniques based on machine learning to identify attacks

without depending on known signatures of already known attacks. While a number of neural network-based

methods to detect XSS attacks have been proposed by security experts, no one has attempted to detect XSS

attacks using a sequence neural network model. We have proposed a novel approach called a sequence- to-

sequence neural network (seq2seq) model to detect cross-site scripting attacks without depending on

signatures of known attacks. Using seq2seq model for XSS detection is based on extracting features from

web application code segments, then using them to predict whether a script contains malicious code. The

seq2seq model is represented as a two-layer neural network, with the first layer processing the training

samples in sequential order and the second layer responsible for the classification of each data sample. This

dataset consists of 10100 instances of malicious and benign JavaScript. The Pearson correlation method

was used for feature selection. All the experiments were conducted using Tenserflow and Keras. The

experimental results that proposed seq2seq achieved an accuracy of 99.8%

Keywords—Cybersecurity, XSS Attacks, Deep Learning.

I. INTRODUCTION

Numerous security challenges in web

applications have been caused by the

Internet’s fast proliferation and the complex

func- tionality of web applications. New

attacks have emerged target-

ing the interplay between web applications

and their underlying databases [1].

Developers need to learn about the potential

se- curity problems associated with the

different technologies. Poor programming

methods may cause certain weaknesses, while

mali- cious scripting by the attackers behind

the scenes can cause other issues [2]. Attackers

are continually developing methods to get ac-

cess to confidential information using online

apps. By accessing user data or seizing control

of system resources, applications that are open

to hostile users might undermine the system’s

security and protection measures. Once

exploited, the systems may be used to launch

further attacks against other machines on the

network. The most common known attacks are

SQL injection, which exploits the poor quality

of programming methods; Cross-site scripting

(XSS), a malicious approach that targets

different types of apps and sites; Cross-site

request forgery (CSRF), which has the same

goals as XSS; Session hijacking, which tries to

steal data from an already initiated session,

and Shell command injection (SCI), which

aims

to seize control of the machine through a

backdoor shell [3]. These attacks can

mailto:meid@bu.edu.sa

69 Mohammad Eid Alzahrani

undermine network security and the integrity

of busi- ness data if they are carried out

successfully. Thus, in applications that expose

data to the Internet or open networks and make

use of insecure programming methods, a

defense strategy should first focus on assuring

that malicious attacks cannot gain access to

user data and system resources. As per Open

Web Application Secu- rity (OWASP) year

2021 report (A03:2021-Injection), cross-site

scripting attacks are number three among the

most reported vul- nerabilities [4]. In this

attack, the attacker injects a malicious script

into the page, which the victim executes. The

vulnerability occurs when user input is not

properly validated before being used in a

dynamic script that is included on the page.

When validat- ing untrusted data, the

application should verify that dangerous

characters are properly encoded or escaped

and reject known bad inputs. The developer

should always sanitize user inputs by en-

coding or escaping HTML tags and JavaScript

code to prevent this attack. Deep learning

(DL), a subfield of machine learning (ML) [5],

consists of layers of an artificial neural

network (ANN) that are inspired by the

neuronal structure of the human brain, with part

of the neurons in each layer having activation

functions that pro- vide non-linear outputs.

Deep learning has been applied to various

fields, from natural language processing to

image recognition [6].

The deep underlying architecture of neural

networks used in DL has also been widely

replicated and utilized. They can be trained

using various machine learning methods, such

as supervised, un- supervised, and

reinforcement learning. The limitations of

earlier machine learning techniques in terms of

accuracy in malware de- tection have improved

with the development of neural networks [7]. By

creating a deep-learning neural network with a

larger number of prospect layers,

classification accuracy can be improved. Fur-

thermore, deep learning models often work

faster than machine learning models,

particularly for complex tasks or problems

with large amounts of data. Keeping in view

the advantages offered by deep learning, we

propose employing a sequence-to-sequence

neural network for detecting XSS attacks. This

approach involves training a neural network to

first detect cross-site scripting (XSS) injection

points in an application and then learn the

specific pat- terns of malicious input. The

contribution of this paper can be summarized

as:

ï First, this research study’s primary goal is

to employ the seq2seq approach to find XSS

attacks in web applications.

ï Second, the Proposed seq2seq approach

seeks to detect XSS attacks in real time.

ï Third, to find an optimal feature set using the

feature selection method.

ï Forth, to achieve higher detection accuracy

using different model parameters.

II. WORKING OF XSS ATTACKS

XSS is an application-level flaw vulnerability

affecting mil- lions of users. To exploit this

flaw, the attacker can plant code on a Web

page that subverts how users see and interact

with an application when they click on a

malicious link or enter data into a tampered

form [2]. Cross-site scripting flaws often

provide cyber- criminals a way to pretend to

be a victim user, execute whatever operations

they can do, and get hold of any of the victim’s

data. The attacker may be able to fully manage

all of the functionality and data of the program

if the target user has privileged access to it.

XSS allows attackers to steal information from

user accounts, read and modify data sent from

the server, and impersonate a victim. XSS is

malicious JavaScript found in web

applications that allow attackers to hijack an

authenticated user’s session [8]. To trick a

website into returning dangerous JavaScript to

visitors, XSS is used. The attacker may

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 70

absolutely obstruct the victim’s engagement

with the application when the malicious code

runs within the victim’s browser by injecting a

payload that forces the browser to run some

arbitrary JavaScript. JavaScript is often ex-

ecuted in a fairly regulated environment by

web browsers. The operating system and files

of the user are only partially accessible to

JavaScript. However, JavaScript may still be

harmful if used improperly as part of malicious

material. The user’s cookies may also be

accessed using Javascript. Session tokens are

often kept

in cookies. A user’s session cookie gives an

attacker access to the user’s personal

information and allows them to operate in the

user’s place while impersonating them.

JavaScript has the ability to read the

Document Object Model (DOM) of the

browser and make arbitrary changes to it.

Fortunately, this only applies to the page on

which JavaScript is active. The

XMLHttpRequest object in JavaScript may be

used to send HTTP requests with any content

to any destinations. Modern browsers that

support HTML5 APIs can utilize JavaScript

[9]. It may be able to access the user’s ge-

olocation, camera, microphone, and even

certain files from their file system, for

instance. The majority of these APIs demand

user opt-in. However, the attacker may get past

this restriction by using social engineering.

OWASP has divided XSS attacks into three

categories: Reflected, Stored and DOM-based

XSS attacks.

1) Reflected XSS

Reflected-XSS is an attack where the attacker

injects mali- cious code into a website that the

user reflects. The website will then send this

malicious code back to the victim, who will

execute it in their browser [10]. Attackers

often use reflected-XSS attacks as a way to

steal users’ cookies. They do this using

JavaScript or VBScript, which can be injected

into websites and executed when users visit

them [11].

2) Stored XSS

This type of XSS occurs when the malicious

code is stored in the database and not executed

until it is retrieved. This type of attack is more

difficult to detect because there are no obvious

signs that a script has been injected into the

database [12].

3) DOM-based XSS

DOM-based XSS exploits the DOM in the

browser. DOM is an independent and

language-neutral platform that permits

applications and scripts to dynamically access

and update web pages, or any other document,

on the fly. The DOM spec- ification defines

how to represent objects in HTML, XML, and

other formats in a system-independent manner.

A DOM- based XSS vulnerability occurs when

user input is echoed into an HTML page

without proper validation or escaping; this can

be triggered simply by loading a page with an

attacker’s URL parameter containing

malicious script code [13].

III. RELATED WORK

Several solutions have been developed to

detect malicious JavaScript in the context of

suspicious websites, with numerous studies

successfully detecting malicious JavaScript by

using ma- chine learning to scan malicious

JavaScript. In this study, our focus is on the

approaches based on machine learning and

deep learning. A study by [14] proposed an

approach for detecting ma- licious code in the

source code of web pages. The features were

extracted from URL and JavaScript code

snippets. The classifi- cation was done using

three machine learning classifiers: SVM,

Nave Bayes and J48 Decision Trees. According

to an investigation by [15], a method for

identifying malicious code-based N-grams

was developed and implemented utilizing

SVM for classification. An N-gram technique

was used to generate tokens from the code. The

experiment yielded an accuracy of 98.04%, a

precision rate of 0.98% , and a recall rate of

71 Mohammad Eid Alzahrani

0.015% when trigram was applied for

tokenizing. The disadvantage of this strategy is

that the tokenizers need continuous training to

identify malicious code. A study by

[16] developed an approach for predicting XSS

vulnerabilities us- ing classification and

clustering methods of machine learning. In

this study, the authors used hybrid features

extracted by using static and dynamic analysis.

The approach performed well in terms of

precision and recall, but the limitation of this

study is that it has huge performance

overheads, which makes it difficult to use in

real-time detection. The overall performance

of machine learning- based approaches for

XSS was very good, but deep learning-based

approaches were developed to improve the

accuracy further. Real- time detection with

high accuracy is crucial in critical applications.

A study by [17] used the LSTM deep learning

approach for XSS detection. Based on this

approach, the features are automatically

extracted from the work vector using the

Word2Vec method. An- other study by [18]

proposed an approach based on modular neural

networks for detecting XSS. The authors used

50 features selected from a real-life dataset.

The studies mentioned in this study will be

used to compare the results obtained from our

proposed approach to measure the

effectiveness of the approach.

IV. PROPOSED APPROACH

The XSS-based attack happens due to security

flaws in websites and owing to characteristics,

and web browsers support sophisti- cated

functionalities that come from dynamic online

applications. Although these features are

appealing and practical, they pose se- rious

threats and raise web applications’ security

vulnerabilities. Cybercriminals often take

advantage of these weaknesses. This study

proposes a novel seq2aeq Neural Network

Model for XSS attack detection based on this

problem. The model is depicted in Figure 1.

This detection model comprises three main

components: data collection, feature selection

and representation, and seq2seq neural

network model. The architecture of the

proposed approach is depicted in Figure 1.

This approach has not been explored be- fore

and it’s worth exploring as it could provide

new insights into how malware detection can

be improved. The novelty of using seq2aeq

Neural Network Model for malware detection

is that it does not require any human

intervention and is able to detect new threats

without any training on the specific types of

malware to be detected.

A Dataset

The dataset utilized in this work was compiled

by authors [19] and downloaded from [20].

The details of the dataset are given in Table I.

Fig. 1. Proposed Approach

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 72

Table I. Dataset Details

Name of Dataset XSS dataset1

Format of Dataset Format of Dataset

Size of Dataset 14.65 MB

Number of Instances 10100

Category of Instances 3

Number of Features 50

Number of Classes 2

B Preprocessing

This technique comprises decoding,

generalization, and tok- enization in its

preprocessing. The first step in detecting

dangerous XSS is decoding the code segment

to determine if it is malicious or benign. The

attackers utilize obfuscation methods to

circum- vent typical filters and validation

processes to avoid detection. In this suggested

method, the decoder will use all options to

decode data and convert the code to a standard

format. Generalization is the second phase of

preprocessing [21]. This stage eliminates data

noise, irrelevant and useless information, and

the normal code from the decoded code.

C Feature Selection

Feature selection is an important technique in

machine learn- ing. It is used to identify the best

subset of features that can be used to train a

model to achieve the best performance in an

application [22]. The selected features should

be as relevant for the training of a model as

possible and not misleading. A good feature

selection technique is useful to reduce

overfitting or reduce variance in a model’s

performance [23]. In many cases, domain

experts have already selected some features

based on their domain knowledge. Feature

selection is important in machine learning as it

helps to reduce overfitting, including reducing

variance in a model’s per- formance. A good

feature selection technique is useful to reduce

overfitting and can help with decision-making

by domain experts. When selecting features,

one should take into account the proper- ties of

each possible feature and the types of suitable

models The main objective of feature selection

is to improve the performance of a machine

learning algorithm by reducing the number of

features it needs to process and, when possible,

by increasing the accuracy of predictions [24].

The feature selection process includes set- ting

criteria for features and eliminating those that

don’t meet the definition. Preprocessing

features that meet the definition and sum-

marizing them into groups or clusters. Select

the most important and informative features

from each cluster to use them in machine

learning models [23]. Analyzing the

performance of models that use the features

selected in order to identify which features

were most effective at predicting a target

outcome, there are two main types of feature

selection algorithms: filter-based and

wrapper- based methods [25]. Filter-based

methods filter out features based on their

individual statistical significance, while

wrapper-based methods use a statistical test or

computational complexity mea- sure to

evaluate all possible subsets of features and

select the best subset. Wrapper-based methods

have been shown to perform bet- ter in practice

and are generally preferred. However, filter-

based methods are best suited for researchers

who do not need to perform any additional

analysis on the features selected by a wrapper-

73 Mohammad Eid Alzahrani

r (1)

based method [26].

C.1 Pearson Correlation

Pearson Correlation for feature selection is a

statistical mea- sure of the linear association

between two variables. It can be used to

determine the strength and direction of a

relationship be- tween different variables [27].

The Pearson correlation coefficient ranges

from -1 to 1. A value of 1 means a perfect

positive linear relationship between the

variables; a value of -1 means a perfect

negative linear relationship between the

variables, while a value of 0 means no linear

relationship between the two variables. The

Pearson correlation coefficient is an important

statistic in statistics and econometrics because

it has desirable mathematical proper- ties that

make it easy to compute from data sets

containing large numbers of observations [28].

The Pearson correlation coefficient can be used

to assess the degree to which one variable may

help predict another variable, even if there is no

causal relationship be- tween them. The

relationship between the features is determined

using the correlation approach. The most

important one is the parametric correlation

approach, which uses the sample data set to

estimate the population parameters like mean,

variance, skew- ness, and kurtosis [29]. There

are two basic groups for measuring the

correlation between two random variables.

One is based on traditional linear correlation,

while the other is founded on infor- mation

theory. The most widely known of these two

measures is the linear correlation coefficient,

which is the covariance of two random

variables, X and Y, divided by the product of

their standard deviations.

The linear correlation ’r’ for variables (X, Y) is shown as: ∑(xi − x¯i)(yi − y¯i) =

∑(x − x¯)2

∑(y − y¯)

are ranked according to the decreasing order.

Then the feature- feature correlation is done to

remove the redundant feature. While applying

this feature selection to our dataset, only 30

features were used in this study.

D Term Frequency–Inverse Document

Frequency

The importance of information retrieval for

anti-malware soft- ware cannot be overstated

[30]. Without solid filtering mecha- nisms,

malware detection would probably not exist as

we know it today. Information retrieval

methods are frequently used for this purpose in

anti-malware software. Term frequency-

inverse document frequency (TFIDF) is one

such method that has been successfully

implemented for malware detection [31].

Term fre- quency (TF) measures how often a

term appears in a document or collection of

documents, while inverse document frequency

(IDF) is a way to account for how common or

rare the term is in general. The final TF-IDF

value is generated by multiplying these

numbers together and is given as:

t f id f (t, d, D) = t f (t, d) · id f (t, D) (2)

where, t f (t, d) =Number of times term ”t” appears in a document ”d”.

idf(t) = Inverse document frequency of the term t.

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 74

The relevance of a term is decided by its TF-

IDF score. If the score is higher, the term is

considered more significant or relevant

compared to terms with low scores converging

towards 0 [32]. TFIDF is a traditional method

of creating numerical dataset vectorization.

TFIDF is used to numerically represent a large

collection of documents or data through their

feature vectors which can then be used for

classification and clustering. We develop a

classification model from the sequential data

analyzed using the LSTM technique in this

study. The current text data must be digitized

when a model uses different classification

techniques. We employed the TF-IDF, the most

used text digitization method, for this purpose.

E The LSTM Model

Long Short-Term Memory (LSTM) is a

recurrent neural net- work (RNN) architecture

designed to address the problem of van- ishing

or exploding gradients in neural networks [33].

It can learn

r = correlation coefficient,

to identify and remember important

information in a sequence of data, such as

identifying the parts of a sentence that are

relevant

xi = values of the x-variable in a sample,

x¯ mean of the values of x-variable,

yi = values of the y-variable in a sample,

y¯ mean of the values of the y-variable

In Pearson correlation, the selected attributes

are ordered in descending order, and the

correlation between features eliminates the

irrelevant and redundant features. All the

selected features

for a specific task. A recurrent neural network

has a sequence of recurrent layers that process

the entire sequence simultaneously. LSTM

networks have many layers that process parts

of the se- quence at a time, with an LSTM unit

inside each of these layers [34]. These LSTM

units can learn to process long sequences of

inputs, like video, and produce a single output

representing the entire sequence at the end.

LSTM can look back in time to see the previous

states and gradients of the network better to

determine

the current and future states of a network.

There are three main reasons LSTM networks

can do this: The LSTM network allows the

network to remember data that has been seen

in the past. It uses a ”gated” mechanism to

decide if and when data from the past should be

integrated into the current state of the network

[35]. This mechanism uses two parallel paths:

a ”future” path that predicts what the network

will see in the future and a ”past” path that

looks back at what the network has seen. The

future path has a ”forget” gate determining

when previous information should be thrown

out. The past path has a ”remember” gate

determining when previous information

should be kept. The ”select” gate is a bias

node that determines which path the network

should use to make its decision at each time

step. The architecture of LSTM is depicted in

Figure 2.

75 Mohammad Eid Alzahrani

Fig. 2. LSTM Architecture

Mathematically LSTM is represented as:

i(t) = σ (W (i)x(t) + u(i)h(t − 1)) //inputgate (3)

f (t) = σ (W)(f)x(t) + u(f)h(t − 1) // f orgetgate (4)

o(t) = σ (W (o))x(t) + u(o)h(t − 1)) //output/exposuregate

(5)

c˜(t) = tanh(W (c)x(t))+u(c)h(t −1) //newmemorycell (6)

c(t) = f (t)oc˜(t − 1) + i(t)oc˜(t) //latememorycells (7)

h(t) = o(t)otanh(c(t)) (8)

Mentioning the meanings of the parameters

and variables in Fig- ure 3. Building an LSTM

network requires attention to three main

architectural choices: the number of layers, the

size of each layer, and the type of each gate.

The LSTM architecture consists of three types

of layers: input, output, and hidden. The input

and output layers contain a single layer of cells

where each cell is connected to the cells in the

same layer in the other sequence and to cells

in the next layer. The hidden layers are

composed of several LSTM

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 76

Fig. 3. Meaning of the parameters and variables

layers inside each hidden layer, where each

LSTM layer contains several LSTM cells [36].

Researchers have demonstrated the effec-

tiveness of LSTM networks in malware

detection. Malware often attempts to avoid

detection by changing its signature over time,

but LSTM networks can track subtle changes in

malware behavior over months or years. In one

example, researchers used an LSTM network

to track the evolution of the CryptoLocker

ransomware family: CryptoLocker remained

largely unchanged during the first 12 months of

operation, but new versions appeared every

few months thereafter. This was a sign that the

malware authors had learned about the

strengths and weaknesses of the initial version

and were making improvements. The LSTM

network observed subtle changes in

CryptoLocker’s code that were not

immediately apparent to humans [37].

F Sequence to Sequence Model

Sequence to Sequence (seq2seq) models, a

special family of recurrent neural networks

(RNN), have been used to address chal- lenging

natural language processing issues [38]. The

models have also been widely used in machine

translation, summarization, and dialogue

systems. This model can ingest long sequences

of words or characters and answer questions

that depend on the structure of the long input

sequence. seq2seq models achieve good

perfor- mance on many challenging tasks by

using the context surrounding an input token to

determine the most likely output token [39].

seq2seq models use attention mechanisms to

determine which pieces of the input sequence

are most relevant to the output to- ken they are

attempting to predict. The architecture of the

seq2seq model is shown in Figure 4 [40]. We

address the long-term depen- dence issue for

detecting XSS attacks in this research and

provide a novel seq2seq model. Our seq2seq

model analyses the source code of a website to

look for XSS attacks. The fundamental

concept is taken from seq2seq modeling,

which uses an encoder-decoder architecture

and is extensively utilized in voice recognition

and lan- guage translation, where the seq2seq is

successful in modeling the long-term

dependence of the words. In our architecture,

an LSTM network is used as the encoder to

convert the sequence of code scripts into a

latent feature space containing compressed

vectors,

77 Mohammad Eid Alzahrani

Fig. 4. The architecture of seq2seq Model

and a second LSTM is used as the decoder to

convert the vectors into a series of potential

attacking phases. This will allow us to

completely eliminate the necessity for

developing further stage de- tection and provide

an end-to-end approach for sequence detection.

Furthermore, since the LSTM serves as the

fundamental building block for both our

encoder and decoder, its advantages in terms

of long-sequence learning provide us with a

superior capacity to simulate the stages’ long-

term dependence.

Standard recurrent designs are inadequate for

modeling inter- actions between sequences of

differing lengths. To increase the flexibility of

load forecasting, seq2seq, an alternative

architecture based on LSTM, is utilized to map

sequences of varying lengths. A possible

solution is to use two LSTMs: an encoder

LSTM that converts a series of inputs into a

single hidden vector and a decoder LSTM that

turns this hidden vector into a sequence of

outputs [41]. The Seq2seq approach was

developed to more efficiently manage input

and output sequences of varying lengths. Each

cell com- prises LSTM cells and two neural

networks: an encoder for the input and a

decoder for the output.

F.1 Encoder

The encoder handles individual tokens in the

input sequence. It aims to pack all the

information about the input sequence into a

vector of fixed length i.e., the ’context vector’.

While cycling through all the tokens, the

encoder delivers this vector onto the decoder

[42]. The decoder takes as input a context

vector and a hidden state of the layer below

and produces an output. It is now the turn of

the decoder to follow a similar procedure but

in a way reverse to that followed by the

encoder.

F.2 Context vector

The vector is created in such a manner that it’s

anticipated to capture the complete meaning of

the input sequence and assist the decoder in

making correct predictions [42]. The context

vector is initialized in a way that assists it in

capturing the overall meaning of the input

sequence and generating complete outputs.

The context vector can be constructed from a

weighted sum of previous hidden states and

feature attention weights. This is, however, a

dangerous and very complex method to use in

a sequence-to-sequence setting since the

potential number of combinations grows

exponentially with the increase in the length of

inputs. As it is stated earlier, these problems

are solved by initializing the context vector

with

a weighted sum of previous hidden states and

feature attention weights. Thus, one method to

create a context vector is to make a linear

combination of a varying number of previous

hidden

F.3 Decoder

The decoder is an LSTM whose beginning

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 78

states are initialized to the end states of the

encoder LSTM, i.e., the context vector of the

encoder’s last cell is input to the first cell of the

decoder network. Using these starting states,

the decoder begins creating the output

sequence, and these outputs are also

considered for subsequent outputs. Through

all this, information is lost, and connections are

drawn between the starting states of the encoder

LSTM and the final state of the decoder LSTM

[43]. The Attentional Seq2Seq function is

implemented by using an encoder RNN to

learn representations of the input sequence and

a decoder RNN to generate the output

sequence from the encoder’s hidden

representations [44]. The attention mechanism

enables the decoder to concentrate on various

areas of the input at each time step in the

output sequence; it is analogous to the

alignment mechanism seen in conventional

statistical translation models. Seq2Seqe

models lack the implicit deterministic

requirement of unidirectional connectionist

temporal classification (CTC models); hence,

they are more adaptable in terms of input-

output reordering [45]. The framework uses a

two-step pipeline to carry out translation; the

first step models how a decoder can generate

an output sequence given a hidden

representation of the input, while the second

step builds on this idea to decode outputs

without directly observing. This scheme is

motivated by a view of the decoder that sees it

as a separate entity that independently

generates outputs given the encoder’s

representations. We experimented with LSTM

cells and evaluated the effect of using a

bidirectional encoder for Seq2Seq models. We

feed the encoder the input sequence in reverse

order. TensorFlow’s implementation with an

embedding layer was employed in our study,

In addition, it can automatically create training

examples based on the tagged corpus. During

training, an input sequence was consumed by

a recurrent cell in the forward direction and

read back as is when making predictions.

V. EVALUATION METHOD

The confusion matrix is a table that is used to

evaluate the performance of machine learning

algorithms. It has four values: true positives,

false positives, true negatives and false

negatives. F-score is one of the most popular

evaluation metrics for machine learning. The

F-score is a metric that evaluates how well an

algo- rithm performs when classifying data. It

measures the accuracy of an algorithm by

calculating a ratio of true positives and true

negatives. In order to find out the F-score for

an algorithm, we need to know its precision

and recall values first. Precision mea- sures

how many times the algorithm correctly

identified a positive sample from among all

samples that it classified as positive, while

recall measures how many times it correctly

identified a positive sample from among all

samples that it classified as either positive

or negative.
TruePositive + TrueNegative

train the seq2seq model following hyperparameters used are given in Table II.

Table II. Model Hyperparameters

Accuracy =

TruePositive + TrueNegative + FlasePositive + FalseNegative

79 Mohammad Eid Alzahrani

TruePositive

Precison =

TruePositive + FalsePositive
(10)

Recall =
 TruePositive

(11)
TruePositive + FalseNegative

F1 = 2 ×
Precison×Recall

Precison + Recall

VI. EXPERIMENTAL SETUP AND

RESULTS

The experimental results obtained are given in

Table III, and a comparison of our proposed

seq2seq model with other existing deep

learning-based approaches is depicted in Table

IV.

This study’s experiments were done using a PC

with a processor of 4.20 GHz, an Intel core i5

with 8 GB RAM. Python, Tensorflow ‘and

Keras were used to perform the experiments.

TensorFlow is a framework that allows to

implementation and train deep learning models.

It also supports a few different types of model

archi- tectures to provide flexibility as well.

Deep learning models can be conceptualized as

multilayered graphs with nodes and edges.

Nodes represent mathematical operations, and

edges represent the flow of data between

operations. The graph is formed with nodes

and edges when the user writes model code. The

framework sched- ules those nodes and edges

and creates a multilayer graph. The graph is

implemented in memory and executed when

the user exe- cutes the model. When the user

executes the model, the framework converts the

graph from graph format to executable format.

When the user creates a new model, the

framework creates a new graph for that model.

Then it creates a session for the user to interact

with that graph. The session is used to add

nodes and edges to the graph and also to

execute them. Keras is a high-level neural

networks API running on top of TensorFlow,

PyTorch, or Theano. It allows users to build

neural networks and run existing models.

Keras provides a simple way to create and

initialize a neural net- work. Using Keras

allows one to choose the right architecture for

the problem and easily make modifications as

needed. The high-level API of Keras allows

developers with limited experience in machine

learning to build and experiment with neural

networks easily. The simplicity of Keras also

makes it easy to integrate into other models or

applications that use TensorFlow as their nu-

merical computation engine. An important

part of the computer security industry is the

detection of malicious executables. Much

research is being done to develop new models

that can be used to detect malicious

executables. TensorFlow and Keras have been

used to implement a seq2seq neural network that

can be used to de- tect malicious XSS attacks.

The model has been trained using a set of

known malicious XSS instances and a set of

1 Iteration performed 20000

2 LSTM cell numbers 32

3 LSTM layers 3

4 Learning Rate 0.4

5 Drop Rate 0.6

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 80

known benign XSS instances. This experiment

used 10-fold cross-validation (CV) to evaluate

the proposed performance. CV divides the

whole dataset into 10 similar size subsets in

which 9 subsets are used for training while one

is used for model validation. Based on the

feature se- lection method, only 30 features

were used in the experiment. To

Table III. Results Obtained

Model Accuracy Precision Recall F-Measure

SVM 95.4 0.953 0.952 0.956

Nä ıve Bayes 94.7 0.951 0.953 0.952

K-NN 96.2 0.965 0.961 0.964

LSTM 97.5 0.964 0.963 0.966

Proposed seq2seq 99.8 0.992 0.998 0.994

Table IV. Comparison with other Deep learning Based Approach

Study Accuracy Precision Recall F-Measure

DeepXSS [17] 97.34 0.95 0.95 0.995

Proposed seq2seq 99.8 0.992 0.9983 0.994

Table III shows that the deep learning-based

approach per- formed much better than

traditional machine learning models, in which

the proposed model achieved 99.8% detection

accuracy. Similarly, the proposed seq2seq

moles outperformed existing deep learning

methods, as shown in Table III. The parameters

shown in Table II provided the best results.

VII. CONCLUSION

XSS is one of the major security challenges

affecting web appli- cations. We proposed and

experimented with a seq2seq model for

detecting XSS attacks in this study. Results

obtained from exper- iments show that the

proposed approach obtained an accuracy of

99.8%, which is so far high compared to

existing approaches based on deep learning.

The proposed approach can detect obfuscated

and new variants of malicious JavaScript. The

Pearson correlation as feature selection and

hyperparameter selection played a vital role in

achieving high accuracy.

REFERENCES

[1] J. Asharf, N. Moustafa, H. Khurshid, E.

Debie, W. Haider, and A. Wahab, “A review of

intrusion detection systems using machine and

deep learning in internet of things: Challenges,

solutions and future directions,” Electronics,

vol. 9, no. 7,

p. 1177, 2020.

[2] B. K. Ayeni, J. B. Sahalu, K. R.

Adeyanju, et al., “Detecting cross-site scripting

in web applications using fuzzy inference

system,” Journal of Computer Networks and

Communica- tions, vol. 2018, 2018.

[3] G. E. Rodr´ıguez, J. G. Torres, P. Flores,

and D. E. Benavides, “Cross-site scripting (xss)

attacks and mitigation: A survey,” Computer

Networks, vol. 166, p. 106960, 2020.

[4] T. OWASP, “Web application security

risks. 2021,” 10.

[5] M. Torres-Vela´zquez, W.-J. Chen, X.

Li, and A. B. McMil- lan, “Application and

construction of deep learning networks in

medical imaging,” IEEE transactions on

radiation and plasma medical sciences, vol. 5,

no. 2, pp. 137–159, 2020.

[6] M. Khan, B. Jan, H. Farman, J. Ahmad,

H. Farman, and

Z. Jan, “Deep learning methods and

applications,” Deep learning: convergence to

big data analytics, pp. 31–42, 2019.

81 Mohammad Eid Alzahrani

[7] D.-L. Vu, T.-K. Nguyen, T. V. Nguyen, T.

N. Nguyen, F. Mas- sacci, and P. H. Phung, “A

convolutional transformation net- work for

malware classification,” in 2019 6th

NAFOSTED conference on information and

computer science (NICS),

pp. 234–239, IEEE, 2019.

[8] T. Singh and Meenakshi, “Prevention of

session hijacking using token and session id

reset approach,” International Journal of

Information Technology, vol. 12, pp. 781–788,

2020.

[9] P. Papadopoulos, P. Ilia, M.

Polychronakis, E. P. Markatos,

S. Ioannidis, and G. Vasiliadis, “Master of web

puppets: Abusing web browsers for persistent

and stealthy computa- tion,” arXiv preprint

arXiv:1810.00464, 2018.

[10] S. A. Lakhapati, P. Shirbhate, S. Jagtap,

and A. Shrirang, “Cross site scripting attack,”

International Journal of Elec- tronics,

Communication and Soft Computing Science

& En- gineering (IJECSCSE), pp. 131–135,

2018.

[11] I. F. Khazal and M. A. Hussain, “Server

side method to detect and prevent stored xss

attack.,” Iraqi Journal for Electrical &

Electronic Engineering, vol. 17, no. 2, 2021.

[12] K. Anagandula and P. Zavarsky, “An

analysis of effective- ness of black-box web

application scanners in detection of stored sql

injection and stored xss vulnerabilities,” in

2020 3rd International Conference on Data

Intelligence and Secu- rity (ICDIS), pp. 40–48,

IEEE, 2020.

[13] P. Wang, J. Bangert, and C. Kern, “If it’s

not secure, it should not compile: Preventing

dom-based xss in large-scale web development

with api hardening,” in 2021 IEEE/ACM 43rd

International Conference on Software

Engineering (ICSE),

pp. 1360–1372, IEEE, 2021.

[14] B. Vishnu and K. Jevitha, “Prediction of

cross-site scripting attack using machine

learning algorithms,” in Proceedings of the

2014 International Conference on

Interdisciplinary Advances in Applied

Computing, pp. 1–5, 2014.

[15] J. Choi, H. Kim, C. Choi, and P. Kim,

“Efficient malicious code detection using n-

gram analysis and svm,” in 2011 14th

International Conference on Network-Based

Information Sys- tems, pp. 618–621, IEEE,

2011.

[16] L. K. Shar, H. B. K. Tan, and L. C.

Briand, “Mining sql injection and cross site

scripting vulnerabilities using hybrid program

analysis,” in 2013 35th International

Conference on Software Engineering (ICSE),

pp. 642–651, IEEE, 2013.

[17] Y. Fang, Y. Li, L. Liu, and C. Huang,

“Deepxss: Cross site scripting detection based

on deep learning,” in Proceedings of the 2018

international conference on computing and

artificial intelligence, pp. 47–51, 2018.

[18] F. M. M. Mokbal, D. Wang, X. Wang,

and L. Fu, “Data augmentation-based

conditional wasserstein generative ad-

versarial network-gradient penalty for xss

attack detection system,” PeerJ Computer

Science, vol. 6, p. e328, 2020.

[19] F. Makbal, “Cross-ite scripting attack

(xss) dataset,” 2021.

[20] A. Bennatan, Y. Choukroun, and P.

Kisilev, “Deep learning for decoding of linear

codes-a syndrome-based approach,” in 2018

IEEE International Symposium on Information

Theory (ISIT), pp. 1595–1599, IEEE, 2018.

[21] Y. Chen, Y. Li, X.-Q. Cheng, and L.

Guo, “Survey and tax- onomy of feature

selection algorithms in intrusion detection

system,” in Information Security and

Cryptology: Second SKLOIS Conference,

Inscrypt 2006, Beijing, China, Novem- ber 29-

December 1, 2006. Proceedings 2, pp. 153–

167,

Springer, 2006.

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 82

[22] P. Saari, T. Eerola, and O. Lartillot,

“Generalizability and simplicity as criteria in

feature selection: Application to mood

classification in music,” IEEE Transactions on

audio, speech, and language processing, vol.

19, no. 6, pp. 1802– 1812, 2010.

[23] S. Khalid, T. Khalil, and S. Nasreen, “A

survey of feature selection and feature

extraction techniques in machine learn- ing,” in

2014 science and information conference, pp.

372– 378, IEEE, 2014.

[24] A. Abraham, F. Pedregosa, M.

Eickenberg, P. Gervais,

A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion,

and G. Varo- quaux, “Machine learning for

neuroimaging with scikit- learn,” Frontiers in

neuroinformatics, vol. 8, p. 14, 2014.

[25] S. Huda, J. Abawajy, M. Alazab, M.

Abdollalihian, R. Is- lam, and J. Yearwood,

“Hybrids of support vector machine wrapper

and filter based framework for malware

detection,” Future Generation Computer

Systems, vol. 55, pp. 376–390, 2016.

[26] J. Brownlee, “How to choose a feature

selection method for machine learning,”

Machine Learning Mastery, vol. 10, 2019.

[27] K. Rawal and A. Ahmad, “Feature

selection for electrical demand forecasting and

analysis of pearson coefficient,” in 2021 IEEE

4th International Electrical and Energy

Confer- ence (CIEEC), pp. 1–6, IEEE, 2021.

[28] H. Ko, B. Son, Y. Lee, H. Jang, and J.

Lee, “The eco- nomic value of nft: Evidence

from a portfolio analysis us- ing mean–

variance framework,” Finance Research

Letters, vol. 47, p. 102784, 2022.

[29] L. Cen, C. S. Gates, L. Si, and N. Li, “A

probabilistic discrim- inative model for android

malware detection with decompiled source

code,” IEEE Transactions on Dependable and

Secure Computing, vol. 12, no. 4, pp. 400–412,

2014.

[30] T. A. Le, T. H. Chu, Q. U. Nguyen, and

X. H. Nguyen, “Malware detection using

genetic programming,” in the 2014 Seventh

IEEE Symposium on Computational

Intelligence for Security and Defense

Applications (CISDA), pp. 1–6, IEEE, 2014.

[31] J. Ramos et al., “Using tf-idf to determine

word relevance in document queries,” in

Proceedings of the first instructional

conference on machine learning, vol. 242, pp.

29–48, Cite- seer, 2003.

[32] C. Gao, J. Yan, S. Zhou, P. K. Varshney,

and H. Liu, “Long short-term memory-based

deep recurrent neural networks for target

tracking,” Information Sciences, vol. 502, pp.

279–296, 2019.

[33] M. Gao, G. Shi, and S. Li, “Online

prediction of ship behavior with automatic

identification system sensor data using bidi-

rectional long short-term memory recurrent

neural network,” Sensors, vol. 18, no. 12, p.

4211, 2018.

[34] G. Petneha´zi, “Recurrent neural networks

for time series fore- casting,” arXiv preprint

arXiv:1901.00069, 2019.

[35] X. Luo and L. O. Oyedele, “Forecasting

building energy consumption: Adaptive long-

short term memory neural net- works driven by

genetic algorithm,” Advanced Engineering

Informatics, vol. 50, p. 101357, 2021.

[36] B. Zhang, W. Xiao, X. Xiao, A. K.

Sangaiah, W. Zhang, and J. Zhang,

“Ransomware classification using patch-based

cnn and self-attention network on embedded n-

grams of opcodes,” Future Generation

Computer Systems, vol. 110,

pp. 708–720, 2020.

[37] M. Aouad, H. Hajj, K. Shaban, R. A.

Jabr, and W. El-Hajj, “A cnn-sequence-to-

sequence network with attention for res-

idential short-term load forecasting,” Electric

Power Systems Research, vol. 211, p. 108152,

2022.

[38] S. Hao, D.-H. Lee, and D. Zhao,

“Sequence to sequence learning with attention

mechanism for short-term passenger flow

prediction in large-scale metro system,”

83 Mohammad Eid Alzahrani

Transportation Research Part C: Emerging

Technologies, vol. 107, pp. 287– 300, 2019.

[39] W. Kim, Y. Han, K. J. Kim, and K.-W.

Song, “Electricity load forecasting using

advanced feature selection and optimal deep

learning model for the variable refrigerant flow

systems,” Energy Reports, vol. 6, pp. 2604–

2618, 2020.

[40] O. Vinyals, M. Fortunato, and N. Jaitly,

“Pointer net- works,” in Advances in Neural

Information Processing Sys- tems (C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R.

Garnett, eds.), vol. 28, Curran Associates, Inc.,

2015.

[41] O. Vinyals, A. Toshev, S. Bengio, and D.

Erhan, “Show and tell: A neural image caption

generator,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015.

[42] Y. Yang, J. Zhou, J. Ai, Y. Bin, A.

Hanjalic, H. T. Shen, and

Y. Ji, “Video captioning by adversarial lstm,”

IEEE Transac- tions on Image Processing, vol.

27, no. 11, pp. 5600–5611, 2018.

[43] C. Zhou, L. Chen, J. Liu, X. Xiao, J. Su,

S. Guo, and H. Wu, “Exploring contextual

word-level style relevance for unsu- pervised

style transfer,” in Proceedings of the 58th

Annual Meeting of the Association for

Computational Linguistics, Association for

Computational Linguistics, 2020.

[44] T. Nakatani, “Improving transformer-

based end-to-end speech recognition with

connectionist temporal classification and

language model integration,” in proc.

INTERSPEECH, vol. 2019, pp. 1408–1412,

2019.

[45] “Tensorflow availabe at:

https://www.tensorflow.org/.”

http://www.tensorflow.org/

Employing Sequence to Sequence Neural Network Model for XSS Attack Detection 84

 توظيف نموذج الشبكة العصبية)تسلسل لتسلسل(للكشف عن هجوم
 البرمجة النصية للمواقع

 ١محمد عيد الزهراني

 قسم علوم الحاسبات، كلية الحاسبات والمعلومات 1
 المملكة العربية السعودية الباحة،جامعة الباحة،

meid@bu.edu.sa

في أضرار وقد تسببت تعتبر هجمات البرمجة النصية عبر المواقع واحدة من أكثر أنواع الهجمات انتشارا مستخلص.
جسيمة للأفراد والمنظمات في شكل خسارة اقتصادية وانتهاك للخصوصية. تم استخدام العديد من تقنيات الكشف

ر عليها من حركة مرور الشبكة. لقد طو للعثور على التهديدات المعروفة باستخدام التوقيعات التي تم الحصول
الباحثون العديد من التقنيات القائمة على التعلم الآلي لتحديد الهجمات دون الاعتماد على التوقيعات المعروفة مسبقاً
للهجمات المعروفة بالفعل. في حين تم اقتراح عدد من الأساليب القائمة على الشبكات العصبية للكشف عن هجمات

، لم يحاول أحد اكتشاف هجمات البرمجة النصية عبر النصية عبر المواقع من قبل خبراء أمن المعلوماتالبرمجة
المواقع باستخدام نموذج الشبكة العصبية التسلسلية. لقد اقترحنا نهجاً جديداً يسمى نموذج الشبكة العصبية من

فة. الاعتماد على توقيعات الهجمات المعرو تسلسل إلى تسلسل لاكتشاف هجمات البرمجة النصية عبر المواقع دون
هجمات البرمجة النصية للمواقع على استخراج الميزات من يعتمد استخدام نموذج تسلسل إلى تسلسل لاكتشاف

مقاطع التعليمات البرمجية لتطبيق الويب، ثم استخدامها للتنبؤ إذا كان البرنامج النصي يحتوي على تعليمات برمجية
ل نموذج تسلسل إلى تسلسل كشبكة عصبية ذات طبقتين، حيث تقوم الطبقة الأولى بمعالجة عينات ضارة. يتم تمثي

انات هذه من تتكون مجموعة البي التدريب بترتيب تسلسلي والطبقة الثانية مسؤولة عن تصنيف كل عينة بيانات.
جريت رسون لاختيار الميزة. أنسخة من جافا سكريبت الضارة وغير الضارة. تم استخدام طريقة ارتباط بي 1١1١١

جميع التجارب باستخدام تنسرفلووكيراس. حققت النتائج التجريبية التي اقترحت تسلسل إلى تسلسل دقة قدرها تسعة
 وتسعون وثمانية من العشرة في المئة.

 النصية عبر الواقع، التعلم العميقالامن السيبراني، هجمات البرمجة ـــ الكلمات المفتاحية

mailto:meid@bu.edu.sa

