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Abstract. Cross-site scripting (XSS) attacks are considered one of the most prevalent types of attacks and 

have caused huge damage to individuals and organizations in the form of economic loss and intrusion into 

privacy. Several detection techniques have been used to find known threats using signatures obtained from 

network traffic. Researchers have developed many techniques based on machine learning to identify attacks 

without depending on known signatures of already known attacks. While a number of neural network-based 

methods to detect XSS attacks have been proposed by security experts, no one has attempted to detect XSS 

attacks using a sequence neural network model. We have proposed a novel approach called a sequence- to-

sequence neural network (seq2seq) model to detect cross-site scripting attacks without depending on 

signatures of known attacks. Using seq2seq model for XSS detection is based on extracting features from 

web application code segments, then using them to predict whether a script contains malicious code. The 

seq2seq model is represented as a two-layer neural network, with the first layer processing the training 

samples in sequential order and the second layer responsible for the classification of each data sample. This 

dataset consists of 10100 instances of malicious and benign JavaScript. The Pearson correlation method 

was used for feature selection. All the experiments were conducted using Tenserflow and Keras. The 

experimental results that proposed seq2seq achieved an accuracy of 99.8% 

Keywords—Cybersecurity, XSS Attacks, Deep Learning. 

 

I. INTRODUCTION 

Numerous security challenges in web 

applications have been caused by the 

Internet’s fast proliferation and the complex 

func- tionality of web applications. New 

attacks have emerged target- 

ing the interplay between web applications 

and their underlying databases [1]. 

Developers need to learn about the potential 

se- curity problems associated with the 

different technologies. Poor programming 

methods may cause certain weaknesses, while 

mali- cious scripting by the attackers behind 

the scenes can cause other issues [2]. Attackers 

are continually developing methods to get ac- 

cess to confidential information using online 

apps. By accessing user data or seizing control 

of system resources, applications that are open 

to hostile users might undermine the system’s 

security and protection measures. Once 

exploited, the systems may be used to launch 

further attacks against other machines on the 

network. The most common known attacks are 

SQL injection, which exploits the poor quality 

of programming methods; Cross-site scripting 

(XSS), a malicious approach that targets 

different types of apps and sites; Cross-site 

request forgery (CSRF), which has the same 

goals as XSS; Session hijacking, which tries to 

steal data from an already initiated session, 

and Shell command injection (SCI), which 

aims 

to seize control of the machine through a 

backdoor shell [3]. These attacks can 
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undermine network security and the integrity 

of busi- ness data if they are carried out 

successfully. Thus, in applications that expose 

data to the Internet or open networks and make 

use of insecure programming methods, a 

defense strategy should first focus on assuring 

that malicious attacks cannot gain access to 

user data and system resources. As per Open 

Web Application Secu- rity (OWASP) year 

2021 report (A03:2021-Injection), cross-site 

scripting attacks are number three among the 

most reported vul- nerabilities [4]. In this 

attack, the attacker injects a malicious script 

into the page, which the victim executes. The 

vulnerability occurs when user input is not 

properly validated before being used in a 

dynamic script that is included on the page. 

When validat- ing untrusted data, the 

application should verify that dangerous 

characters are properly encoded or escaped 

and reject known bad inputs. The developer 

should always sanitize user inputs by en- 

coding or escaping HTML tags and JavaScript 

code to prevent this attack. Deep learning 

(DL), a subfield of machine learning (ML) [5], 

consists of layers of an artificial neural 

network (ANN) that are inspired by the 

neuronal structure of the human brain, with part 

of the neurons in each layer having activation 

functions that pro- vide non-linear outputs. 

Deep learning has been applied to various 

fields, from natural language processing to 

image recognition [6]. 

The deep underlying architecture of neural 

networks used in DL has also been widely 

replicated and utilized. They can be trained 

using various machine learning methods, such 

as supervised, un- supervised, and 

reinforcement learning. The limitations of 

earlier machine learning techniques in terms of 

accuracy in malware de- tection have improved 

with the development of neural networks [7]. By 

creating a deep-learning neural network with a 

larger number of prospect layers, 

classification accuracy can be improved. Fur- 

thermore, deep learning models often work 

faster than machine learning models, 

particularly for complex tasks or problems 

with large amounts of data. Keeping in view 

the advantages offered by deep learning, we 

propose employing a sequence-to-sequence 

neural network for detecting XSS attacks. This 

approach involves training a neural network to 

first detect cross-site scripting (XSS) injection 

points in an application and then learn the 

specific pat- terns of malicious input. The 

contribution of this paper can be summarized 

as: 

ï First, this research study’s primary goal is 

to employ the seq2seq approach to find XSS 

attacks in web applications. 

ï Second, the Proposed seq2seq approach 

seeks to detect XSS attacks in real time. 

ï Third, to find an optimal feature set using the 

feature selection method. 

ï Forth, to achieve higher detection accuracy 

using different model parameters. 

 

II. WORKING OF XSS ATTACKS 

XSS is an application-level flaw vulnerability 

affecting mil- lions of users. To exploit this 

flaw, the attacker can plant code on a Web 

page that subverts how users see and interact 

with an application when they click on a 

malicious link or enter data into a tampered 

form [2]. Cross-site scripting flaws often 

provide cyber- criminals a way to pretend to 

be a victim user, execute whatever operations 

they can do, and get hold of any of the victim’s 

data. The attacker may be able to fully manage 

all of the functionality and data of the program 

if the target user has privileged access to it. 

XSS allows attackers to steal information from 

user accounts, read and modify data sent from 

the server, and impersonate a victim. XSS is 

malicious JavaScript found in web 

applications that allow attackers to hijack an 

authenticated user’s session [8]. To trick a 

website into returning dangerous JavaScript to 

visitors, XSS is used. The attacker may 
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absolutely obstruct the victim’s engagement 

with the application when the malicious code 

runs within the victim’s browser by injecting a 

payload that forces the browser to run some 

arbitrary JavaScript. JavaScript is often ex- 

ecuted in a fairly regulated environment by 

web browsers. The operating system and files 

of the user are only partially accessible to 

JavaScript. However, JavaScript may still be 

harmful if used improperly as part of malicious 

material. The user’s cookies may also be 

accessed using Javascript. Session tokens are 

often kept 

in cookies. A user’s session cookie gives an 

attacker access to the user’s personal 

information and allows them to operate in the 

user’s place while impersonating them. 

JavaScript has the ability to read the 

Document Object Model (DOM) of the 

browser and make arbitrary changes to it. 

Fortunately, this only applies to the page on 

which JavaScript is active. The 

XMLHttpRequest object in JavaScript may be 

used to send HTTP requests with any content 

to any destinations. Modern browsers that 

support HTML5 APIs can utilize JavaScript 

[9]. It may be able to access the user’s ge- 

olocation, camera, microphone, and even 

certain files from their file system, for 

instance. The majority of these APIs demand 

user opt-in. However, the attacker may get past 

this restriction by using social engineering. 

OWASP has divided XSS attacks into three 

categories: Reflected, Stored and DOM-based 

XSS attacks. 

1) Reflected XSS 

Reflected-XSS is an attack where the attacker 

injects mali- cious code into a website that the 

user reflects. The website will then send this 

malicious code back to the victim, who will 

execute it in their browser [10]. Attackers 

often use reflected-XSS attacks as a way to 

steal users’ cookies. They do this using 

JavaScript or VBScript, which can be injected 

into websites and executed when users visit 

them [11]. 

2) Stored XSS 

This type of XSS occurs when the malicious 

code is stored in the database and not executed 

until it is retrieved. This type of attack is more 

difficult to detect because there are no obvious 

signs that a script has been injected into the 

database [12]. 

3) DOM-based XSS 

DOM-based XSS exploits the DOM in the 

browser. DOM is an independent and 

language-neutral platform that permits 

applications and scripts to dynamically access 

and update web pages, or any other document, 

on the fly. The DOM spec- ification defines 

how to represent objects in HTML, XML, and 

other formats in a system-independent manner. 

A DOM- based XSS vulnerability occurs when 

user input is echoed into an HTML page 

without proper validation or escaping; this can 

be triggered simply by loading a page with an 

attacker’s URL parameter containing 

malicious script code [13]. 

III. RELATED WORK 

Several solutions have been developed to 

detect malicious JavaScript in the context of 

suspicious websites, with numerous studies 

successfully detecting malicious JavaScript by 

using ma- chine learning to scan malicious 

JavaScript. In this study, our focus is on the 

approaches based on machine learning and 

deep learning. A study by [14] proposed an 

approach for detecting ma- licious code in the 

source code of web pages. The features were 

extracted from URL and JavaScript code 

snippets. The classifi- cation was done using 

three machine learning classifiers: SVM, 

Nave Bayes and J48 Decision Trees. According 

to an investigation by [15], a method for 

identifying malicious code-based N-grams 

was developed and implemented utilizing 

SVM for classification. An N-gram technique 

was used to generate tokens from the code. The 

experiment yielded an accuracy of 98.04%, a 

precision rate of 0.98% , and a recall rate of 
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0.015% when trigram was applied for 

tokenizing. The disadvantage of this strategy is 

that the tokenizers need continuous training to 

identify malicious code. A study by 

[16] developed an approach for predicting XSS 

vulnerabilities us- ing classification and 

clustering methods of machine learning. In 

this study, the authors used hybrid features 

extracted by using static and dynamic analysis. 

The approach performed well in terms of 

precision and recall, but the limitation of this 

study is that it has huge performance 

overheads, which makes it difficult to use in 

real-time detection. The overall performance 

of machine learning- based approaches for 

XSS was very good, but deep learning-based 

approaches were developed to improve the 

accuracy further. Real- time detection with 

high accuracy is crucial in critical applications. 

A study by [17] used the LSTM deep learning 

approach for XSS detection. Based on this 

approach, the features are automatically 

extracted from the work vector using the 

Word2Vec method. An- other study by [18] 

proposed an approach based on modular neural 

networks for detecting XSS. The authors used 

50 features selected from a real-life dataset. 

The studies mentioned in this study will be 

used to compare the results obtained from our 

proposed approach to measure the 

effectiveness of the approach. 

IV. PROPOSED APPROACH 

The XSS-based attack happens due to security 

flaws in websites and owing to characteristics, 

and web browsers support sophisti- cated 

functionalities that come from dynamic online 

applications. Although these features are 

appealing and practical, they pose se- rious 

threats and raise web applications’ security 

vulnerabilities. Cybercriminals often take 

advantage of these weaknesses. This study 

proposes a novel seq2aeq Neural Network 

Model for XSS attack detection based on this 

problem. The model is depicted in Figure 1. 

This detection model comprises three main 

components: data collection, feature selection 

and representation, and seq2seq neural 

network model. The architecture of the 

proposed approach is depicted in Figure 1. 

This approach has not been explored be- fore 

and it’s worth exploring as it could provide 

new insights into how malware detection can 

be improved. The novelty of using seq2aeq 

Neural Network Model for malware detection 

is that it does not require any human 

intervention and is able to detect new threats 

without any training on the specific types of 

malware to be detected. 

A Dataset 

The dataset utilized in this work was compiled 

by authors [19] and downloaded from [20]. 

The details of the dataset are given in Table I. 
 

 

Fig. 1. Proposed Approach 
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Table I. Dataset Details 

 

Name of Dataset XSS dataset1 

Format of Dataset Format of Dataset 

Size of Dataset 14.65 MB 

Number of Instances 10100 

Category of Instances 3 

Number of Features 50 

Number of Classes 2 

B Preprocessing 

This technique comprises decoding, 

generalization, and tok- enization in its 

preprocessing. The first step in detecting 

dangerous XSS is decoding the code segment 

to determine if it is malicious or benign. The 

attackers utilize obfuscation methods to 

circum- vent typical filters and validation 

processes to avoid detection. In this suggested 

method, the decoder will use all options to 

decode data and convert the code to a standard 

format. Generalization is the second phase of 

preprocessing [21]. This stage eliminates data 

noise, irrelevant and useless information, and 

the normal code from the decoded code. 

C Feature Selection 

Feature selection is an important technique in 

machine learn- ing. It is used to identify the best 

subset of features that can be used to train a 

model to achieve the best performance in an 

application [22]. The selected features should 

be as relevant for the training of a model as 

possible and not misleading. A good feature 

selection technique is useful to reduce 

overfitting or reduce variance in a model’s 

performance [23]. In many cases, domain 

experts have already selected some features 

based on their domain knowledge. Feature 

selection is important in machine learning as it 

helps to reduce overfitting, including reducing 

variance in a model’s per- formance. A good 

feature selection technique is useful to reduce 

overfitting and can help with decision-making 

by domain experts. When selecting features, 

one should take into account the proper- ties of 

each possible feature and the types of suitable 

models The main objective of feature selection 

is to improve the performance of a machine 

learning algorithm by reducing the number of 

features it needs to process and, when possible, 

by increasing the accuracy of predictions [24]. 

The feature selection process includes set- ting 

criteria for features and eliminating those that 

don’t meet the definition. Preprocessing 

features that meet the definition and sum- 

marizing them into groups or clusters. Select 

the most important and informative features 

from each cluster to use them in machine 

learning models [23]. Analyzing the 

performance of models that use the features 

selected in order to identify which features 

were most effective at predicting a target 

outcome, there are two main types of feature 

selection algorithms: filter-based and 

wrapper- based methods [25]. Filter-based 

methods filter out features based on their 

individual statistical significance, while 

wrapper-based methods use a statistical test or 

computational complexity mea- sure to 

evaluate all possible subsets of features and 

select the best subset. Wrapper-based methods 

have been shown to perform bet- ter in practice 

and are generally preferred. However, filter-

based methods are best suited for researchers 

who do not need to perform any additional 

analysis on the features selected by a wrapper-
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r (1) 

based method [26]. 

C.1 Pearson Correlation 

Pearson Correlation for feature selection is a 

statistical mea- sure of the linear association 

between two variables. It can be used to 

determine the strength and direction of a 

relationship be- tween different variables [27]. 

The Pearson correlation coefficient ranges 

from -1 to 1. A value of 1 means a perfect 

positive linear relationship between the 

variables; a value of -1 means a perfect 

negative linear relationship between the 

variables, while a value of 0 means no linear 

relationship between the two variables. The 

Pearson correlation coefficient is an important 

statistic in statistics and econometrics because 

it has desirable mathematical proper- ties that 

make it easy to compute from data sets 

containing large numbers of observations [28]. 

The Pearson correlation coefficient can be used 

to assess the degree to which one variable may 

help predict another variable, even if there is no 

causal relationship be- tween them. The 

relationship between the features is determined 

using the correlation approach. The most 

important one is the parametric correlation 

approach, which uses the sample data set to 

estimate the population parameters like mean, 

variance, skew- ness, and kurtosis [29]. There 

are two basic groups for measuring the 

correlation between two random variables. 

One is based on traditional linear correlation, 

while the other is founded on infor- mation 

theory. The most widely known of these two 

measures is the linear correlation coefficient, 

which is the covariance of two random 

variables, X and Y, divided by the product of 

their standard deviations. 

 
The linear correlation ’r’ for variables (X, Y) is shown as: ∑(xi − x¯i)(yi − y¯i)  =  

∑(x − x¯)2
 

∑(y − y¯ ) 

 

are ranked according to the decreasing order. 

Then the feature- feature correlation is done to 

remove the redundant feature. While applying 

this feature selection to our dataset, only 30 

features were used in this study. 

D Term Frequency–Inverse Document 

Frequency 

The importance of information retrieval for 

anti-malware soft- ware cannot be overstated 

[30]. Without solid filtering mecha- nisms, 

malware detection would probably not exist as 

we know it today. Information retrieval 

methods are frequently used for this purpose in 

anti-malware software. Term frequency-

inverse document frequency (TFIDF) is one 

such method that has been successfully 

implemented for malware detection [31]. 

Term fre- quency (TF) measures how often a 

term appears in a document or collection of 

documents, while inverse document frequency 

(IDF) is a way to account for how common or 

rare the term is in general. The final TF-IDF 

value is generated by multiplying these 

numbers together and is given as: 

 
t f id f (t, d, D) = t f (t, d) · id f (t, D) (2) 

where, t f (t, d) =Number of times term ”t” appears in a document ”d”. 

idf(t) = Inverse document frequency of the term t. 
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The relevance of a term is decided by its TF-

IDF score. If the score is higher, the term is 

considered more significant or relevant 

compared to terms with low scores converging 

towards 0 [32]. TFIDF is a traditional method 

of creating numerical dataset vectorization. 

TFIDF is used to numerically represent a large 

collection of documents or data through their 

feature vectors which can then be used for 

classification and clustering. We develop a 

classification model from the sequential data 

analyzed using the LSTM technique in this 

study. The current text data must be digitized 

when a model uses different classification 

techniques. We employed the TF-IDF, the most 

used text digitization method, for this purpose. 

E The LSTM Model 

Long Short-Term Memory (LSTM) is a 

recurrent neural net- work (RNN) architecture 

designed to address the problem of van- ishing 

or exploding gradients in neural networks [33]. 

It can learn 

 
r = correlation coefficient, 

to identify and remember important 

information in a sequence of data, such as 

identifying the parts of a sentence that are 

relevant 

xi = values of the x-variable in a sample, 

x¯ mean of the values of x-variable, 

yi = values of the y-variable in a sample, 

y¯ mean of the values of the y-variable 

In Pearson correlation, the selected attributes 

are ordered in descending order, and the 

correlation between features eliminates the 

irrelevant and redundant features. All the 

selected features 

for a specific task. A recurrent neural network 

has a sequence of recurrent layers that process 

the entire sequence simultaneously. LSTM 

networks have many layers that process parts 

of the se- quence at a time, with an LSTM unit 

inside each of these layers [34]. These LSTM 

units can learn to process long sequences of 

inputs, like video, and produce a single output 

representing the entire sequence at the end. 

LSTM can look back in time to see the previous 

states and gradients of the network better to 

determine 

the current and future states of a network. 

There are three main reasons LSTM networks 

can do this: The LSTM network allows the 

network to remember data that has been seen 

in the past. It uses a ”gated” mechanism to 

decide if and when data from the past should be 

integrated into the current state of the network 

[35]. This mechanism uses two parallel paths: 

a ”future” path that predicts what the network 

will see in the future and a ”past” path that 

looks back at what the network has seen. The 

future path has a ”forget” gate determining 

when previous information should be thrown 

out. The past path has a ”remember” gate 

determining when previous information 

should be kept. The ”select” gate is a bias 

node that determines which path the network 

should use to make its decision at each time 

step. The architecture of LSTM is depicted in 

Figure 2. 
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Fig. 2. LSTM Architecture 

 

Mathematically LSTM is represented as: 

i(t) = σ (W (i)x(t) + u(i)h(t − 1)) //inputgate (3) 

 

f (t) = σ (W )( f )x(t) + u( f )h(t − 1) // f orgetgate (4) 

 

o(t) = σ (W (o))x(t) + u(o)h(t − 1)) //output/exposuregate 

(5) 

c˜(t) = tanh(W (c)x(t))+u(c)h(t −1) //newmemorycell (6) 

 

c(t) = f (t)oc˜(t − 1) + i(t)oc˜(t) //latememorycells (7) 

h(t) = o(t)otanh(c(t)) (8) 

Mentioning the meanings of the parameters 

and variables in Fig- ure 3. Building an LSTM 

network requires attention to three main 

architectural choices: the number of layers, the 

size of each layer, and the type of each gate. 

The LSTM architecture consists of three types 

of layers: input, output, and hidden. The input 

and output layers contain a single layer of cells 

where each cell is connected to the cells in the 

same layer in the other sequence and to cells 

in the next layer. The hidden layers are 

composed of several LSTM 
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Fig. 3. Meaning of the parameters and variables 
 

layers inside each hidden layer, where each 

LSTM layer contains several LSTM cells [36]. 

Researchers have demonstrated the effec- 

tiveness of LSTM networks in malware 

detection. Malware often attempts to avoid 

detection by changing its signature over time, 

but LSTM networks can track subtle changes in 

malware behavior over months or years. In one 

example, researchers used an LSTM network 

to track the evolution of the CryptoLocker 

ransomware family: CryptoLocker remained 

largely unchanged during the first 12 months of 

operation, but new versions appeared every 

few months thereafter. This was a sign that the 

malware authors had learned about the 

strengths and weaknesses of the initial version 

and were making improvements. The LSTM 

network observed subtle changes in 

CryptoLocker’s code that were not 

immediately apparent to humans [37]. 

F Sequence to Sequence Model 

Sequence to Sequence (seq2seq) models, a 

special family of recurrent neural networks 

(RNN), have been used to address chal- lenging 

natural language processing issues [38]. The 

models have also been widely used in machine 

translation, summarization, and dialogue 

systems. This model can ingest long sequences 

of words or characters and answer questions 

that depend on the structure of the long input 

sequence. seq2seq models achieve good 

perfor- mance on many challenging tasks by 

using the context surrounding an input token to 

determine the most likely output token [39]. 

seq2seq models use attention mechanisms to 

determine which pieces of the input sequence 

are most relevant to the output to- ken they are 

attempting to predict. The architecture of the 

seq2seq model is shown in Figure 4 [40]. We 

address the long-term depen- dence issue for 

detecting XSS attacks in this research and 

provide a novel seq2seq model. Our seq2seq 

model analyses the source code of a website to 

look for XSS attacks. The fundamental 

concept is taken from seq2seq modeling, 

which uses an encoder-decoder architecture 

and is extensively utilized in voice recognition 

and lan- guage translation, where the seq2seq is 

successful in modeling the long-term 

dependence of the words. In our architecture, 

an LSTM network is used as the encoder to 

convert the sequence of code scripts into a 

latent feature space containing compressed 

vectors, 
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Fig. 4. The architecture of seq2seq Model 
 

and a second LSTM is used as the decoder to 

convert the vectors into a series of potential 

attacking phases. This will allow us to 

completely eliminate the necessity for 

developing further stage de- tection and provide 

an end-to-end approach for sequence detection. 

Furthermore, since the LSTM serves as the 

fundamental building block for both our 

encoder and decoder, its advantages in terms 

of long-sequence learning provide us with a 

superior capacity to simulate the stages’ long-

term dependence. 

Standard recurrent designs are inadequate for 

modeling inter- actions between sequences of 

differing lengths. To increase the flexibility of 

load forecasting, seq2seq, an alternative 

architecture based on LSTM, is utilized to map 

sequences of varying lengths. A possible 

solution is to use two LSTMs: an encoder 

LSTM that converts a series of inputs into a 

single hidden vector and a decoder LSTM that 

turns this hidden vector into a sequence of 

outputs [41]. The Seq2seq approach was 

developed to more efficiently manage input 

and output sequences of varying lengths. Each 

cell com- prises LSTM cells and two neural 

networks: an encoder for the input and a 

decoder for the output. 

F.1 Encoder 

The encoder handles individual tokens in the 

input sequence. It aims to pack all the 

information about the input sequence into a 

vector of fixed length i.e., the ’context vector’. 

While cycling through all the tokens, the 

encoder delivers this vector onto the decoder 

[42]. The decoder takes as input a context 

vector and a hidden state of the layer below 

and produces an output. It is now the turn of 

the decoder to follow a similar procedure but 

in a way reverse to that followed by the 

encoder. 

F.2 Context vector 

The vector is created in such a manner that it’s 

anticipated to capture the complete meaning of 

the input sequence and assist the decoder in 

making correct predictions [42]. The context 

vector is initialized in a way that assists it in 

capturing the overall meaning of the input 

sequence and generating complete outputs. 

The context vector can be constructed from a 

weighted sum of previous hidden states and 

feature attention weights. This is, however, a 

dangerous and very complex method to use in 

a sequence-to-sequence setting since the 

potential number of combinations grows 

exponentially with the increase in the length of 

inputs. As it is stated earlier, these problems 

are solved by initializing the context vector 

with 

a weighted sum of previous hidden states and 

feature attention weights. Thus, one method to 

create a context vector is to make a linear 

combination of a varying number of previous 

hidden 

F.3 Decoder 

The decoder is an LSTM whose beginning 
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states are initialized to the end states of the 

encoder LSTM, i.e., the context vector of the 

encoder’s last cell is input to the first cell of the 

decoder network. Using these starting states, 

the decoder begins creating the output 

sequence, and these outputs are also 

considered for subsequent outputs. Through 

all this, information is lost, and connections are 

drawn between the starting states of the encoder 

LSTM and the final state of the decoder LSTM 

[43]. The Attentional Seq2Seq function is 

implemented by using an encoder RNN to 

learn representations of the input sequence and 

a decoder RNN to generate the output 

sequence from the encoder’s hidden 

representations [44]. The attention mechanism 

enables the decoder to concentrate on various 

areas of the input at each time step in the 

output sequence; it is analogous to the 

alignment mechanism seen in conventional 

statistical translation models. Seq2Seqe 

models lack the implicit deterministic 

requirement of unidirectional connectionist 

temporal classification (CTC models); hence, 

they are more adaptable in terms of input-

output reordering [45]. The framework uses a 

two-step pipeline to carry out translation; the 

first step models how a decoder can generate 

an output sequence given a hidden 

representation of the input, while the second 

step builds on this idea to decode outputs 

without directly observing. This scheme is 

motivated by a view of the decoder that sees it 

as a separate entity that independently 

generates outputs given the encoder’s 

representations. We experimented with LSTM 

cells and evaluated the effect of using a 

bidirectional encoder for Seq2Seq models. We 

feed the encoder the input sequence in reverse 

order. TensorFlow’s implementation with an 

embedding layer was employed in our study, 

In addition, it can automatically create training 

examples based on the tagged corpus. During 

training, an input sequence was consumed by 

a recurrent cell in the forward direction and 

read back as is when making predictions. 

V. EVALUATION METHOD 

The confusion matrix is a table that is used to 

evaluate the performance of machine learning 

algorithms. It has four values: true positives, 

false positives, true negatives and false 

negatives. F-score is one of the most popular 

evaluation metrics for machine learning. The 

F-score is a metric that evaluates how well an 

algo- rithm performs when classifying data. It 

measures the accuracy of an algorithm by 

calculating a ratio of true positives and true 

negatives. In order to find out the F-score for 

an algorithm, we need to know its precision 

and recall values first. Precision mea- sures 

how many times the algorithm correctly 

identified a positive sample from among all 

samples that it classified as positive, while 

recall measures how many times it correctly 

identified a positive sample from among all 

samples that it classified as either positive 

or negative. 
TruePositive + TrueNegative 

train the seq2seq model following hyperparameters used are given in Table II. 

Table II. Model Hyperparameters 

 

 
Accuracy = 

TruePositive + TrueNegative + FlasePositive + FalseNegative 
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TruePositive 

 

 

 

 

 
Precison = 

TruePositive + FalsePositive 
(10) 

Recall = 
 TruePositive  

(11) 
TruePositive + FalseNegative 
 

F1 = 2 × 
Precison×Recall 

Precison + Recall 

 

VI. EXPERIMENTAL SETUP AND 

RESULTS 

The experimental results obtained are given in 

Table III, and a comparison of our proposed 

seq2seq model with other existing deep 

learning-based approaches is depicted in Table 

IV. 

This study’s experiments were done using a PC 

with a processor of 4.20 GHz, an Intel core i5 

with 8 GB RAM. Python, Tensorflow ‘and 

Keras were used to perform the experiments. 

TensorFlow is a framework that allows to 

implementation and train deep learning models. 

It also supports a few different types of model 

archi- tectures to provide flexibility as well. 

Deep learning models can be conceptualized as 

multilayered graphs with nodes and edges. 

Nodes represent mathematical operations, and 

edges represent the flow of data between 

operations. The graph is formed with nodes 

and edges when the user writes model code. The 

framework sched- ules those nodes and edges 

and creates a multilayer graph. The graph is 

implemented in memory and executed when 

the user exe- cutes the model. When the user 

executes the model, the framework converts the 

graph from graph format to executable format. 

When the user creates a new model, the 

framework creates a new graph for that model. 

Then it creates a session for the user to interact 

with that graph. The session is used to add 

nodes and edges to the graph and also to 

execute them. Keras is a high-level neural 

networks API running on top of TensorFlow, 

PyTorch, or Theano. It allows users to build 

neural networks and run existing models. 

Keras provides a simple way to create and 

initialize a neural net- work. Using Keras 

allows one to choose the right architecture for 

the problem and easily make modifications as 

needed. The high-level API of Keras allows 

developers with limited experience in machine 

learning to build and experiment with neural 

networks easily. The simplicity of Keras also 

makes it easy to integrate into other models or 

applications that use TensorFlow as their nu- 

merical computation engine. An important 

part of the computer security industry is the 

detection of malicious executables. Much 

research is being done to develop new models 

that can be used to detect malicious 

executables. TensorFlow and Keras have been 

used to implement a seq2seq neural network that 

can be used to de- tect malicious XSS attacks. 

The model has been trained using a set of 

known malicious XSS instances and a set of 

1 Iteration performed 20000 

2 LSTM cell numbers 32 

3 LSTM layers 3 

4 Learning Rate 0.4 

5 Drop Rate 0.6 
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known benign XSS instances. This experiment 

used 10-fold cross-validation (CV) to evaluate 

the proposed performance. CV divides the 

whole dataset into 10 similar size subsets in 

which 9 subsets are used for training while one 

is used for model validation. Based on the 

feature se- lection method, only 30 features 

were used in the experiment. To 
 

Table III. Results Obtained 

 

Model Accuracy Precision Recall F-Measure 

SVM 95.4 0.953 0.952 0.956 

Nä ıve Bayes 94.7 0.951 0.953 0.952 

K-NN 96.2 0.965 0.961 0.964 

LSTM 97.5 0.964 0.963 0.966 

Proposed seq2seq 99.8 0.992 0.998 0.994 

 

Table IV. Comparison with other Deep learning Based Approach 

 

Study Accuracy Precision Recall F-Measure 

DeepXSS [17] 97.34 0.95 0.95 0.995 

Proposed seq2seq 99.8 0.992 0.9983 0.994 

 

Table III shows that the deep learning-based 

approach per- formed much better than 

traditional machine learning models, in which 

the proposed model achieved 99.8% detection 

accuracy. Similarly, the proposed seq2seq 

moles outperformed existing deep learning 

methods, as shown in Table III. The parameters 

shown in Table II provided the best results. 

VII. CONCLUSION 

XSS is one of the major security challenges 

affecting web appli- cations. We proposed and 

experimented with a seq2seq model for 

detecting XSS attacks in this study. Results 

obtained from exper- iments show that the 

proposed approach obtained an accuracy of 

99.8%, which is so far high compared to 

existing approaches based on deep learning. 

The proposed approach can detect obfuscated 

and new variants of malicious JavaScript. The 

Pearson correlation as feature selection and 

hyperparameter selection played a vital role in 

achieving high accuracy. 
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في أضرار  وقد تسببت تعتبر هجمات البرمجة النصية عبر المواقع واحدة من أكثر أنواع الهجمات انتشارا مستخلص.
جسيمة للأفراد والمنظمات في شكل خسارة اقتصادية وانتهاك للخصوصية. تم استخدام العديد من تقنيات الكشف 

ر عليها من حركة مرور الشبكة. لقد طو  للعثور على التهديدات المعروفة باستخدام التوقيعات التي تم الحصول
الباحثون العديد من التقنيات القائمة على التعلم الآلي لتحديد الهجمات دون الاعتماد على التوقيعات المعروفة مسبقاً 
للهجمات المعروفة بالفعل. في حين تم اقتراح عدد من الأساليب القائمة على الشبكات العصبية للكشف عن هجمات 

، لم يحاول أحد اكتشاف هجمات البرمجة النصية عبر النصية عبر المواقع من قبل خبراء أمن المعلوماتالبرمجة 
المواقع باستخدام نموذج الشبكة العصبية التسلسلية. لقد اقترحنا نهجاً جديداً يسمى نموذج الشبكة العصبية من 

فة. الاعتماد على توقيعات الهجمات المعرو تسلسل إلى تسلسل لاكتشاف هجمات البرمجة النصية عبر المواقع دون 
هجمات البرمجة النصية للمواقع على استخراج الميزات من يعتمد استخدام نموذج تسلسل إلى تسلسل لاكتشاف 

مقاطع التعليمات البرمجية لتطبيق الويب، ثم استخدامها للتنبؤ إذا كان البرنامج النصي يحتوي على تعليمات برمجية 
ل نموذج تسلسل إلى تسلسل كشبكة عصبية ذات طبقتين، حيث تقوم الطبقة الأولى بمعالجة عينات ضارة. يتم تمثي

انات هذه من تتكون مجموعة البي التدريب بترتيب تسلسلي والطبقة الثانية مسؤولة عن تصنيف كل عينة بيانات.
جريت رسون لاختيار الميزة. أنسخة من جافا سكريبت الضارة وغير الضارة. تم استخدام طريقة ارتباط بي 1١1١١

جميع التجارب باستخدام تنسرفلووكيراس. حققت النتائج التجريبية التي اقترحت تسلسل إلى تسلسل دقة قدرها تسعة 
 وتسعون وثمانية من العشرة في المئة.

 النصية عبر الواقع، التعلم العميقالامن السيبراني، هجمات البرمجة ـــ الكلمات المفتاحية
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