
67

JKAU: Comp. IT. Sci., Vol. 13 No. 2, pp: 67 – 76 (2024 A.D.)

DOI: 10.4197/Comp.13-2.5

A Multi-Label Code Comment Classifier using

BERT

Zarah Shibli, Emad Albassam

Department of Computer Science, King Abdulaziz University

Jeddah, Saudi Arabia

zshibli0002@stu.kau.edu.sa, ealbassam@kau.edu.sa

Abstract— Code comments play an essential role in software development by providing documentation, explanations,

and clarifications for program logic and functionality. It is crucial to effectively classify code comments to improve

software maintainability and collaboration in the face of a growing amount of code. Developers can easily identify and

comprehend different code sections’ purpose, behavior, and requirements by accurately classifying code comments.

Although there are prior research efforts in the area of code comment classification, they are restricted to binary or

multi-class classification. With this regard, this paper advances the literature in the area of code comment classification

by presenting a novel approach that incorporates multi-label classification to enhance code comment classification in

three programming languages: Python, Pharo, and Java. We employ BERT, a widely used language model, and

achieve an F1 score of 0.64 through experimentation. Our proposed approach facilitates the understanding and

managing code comments, making software development more efficient and productive. Additionally, our approach

can be extended to other programming languages and serve as a foundation for further research in code comment

classification.

Keywords— Code Comment, Classification, Natural Language Processing, Deep Learning, Software Engineering

I. INTRODUCTION

Code comments are essential components in software

development because they give additional information about

the code's purpose and functionality. The advantages of

having a common category for code comments include

increased code understanding, maintenance, and developer

collaboration.

However, maintaining and classifying code comments

may be difficult, particularly in large-scale software systems.

Manually classifying code comments takes effort and is prone

to human mistakes [1]. To address this problem, researchers

have explored machine learning algorithms to automatically

classify code comments in real-time. Prior works have

introduced various taxonomies that categorize code

comments based on their content and purpose [2]. Several

studies have investigated the trends and patterns in code

commenting behavior using machine learning algorithms

with satisfactory results in effectively categorizing code

comments [3] [4].

Recent advances in deep learning techniques have also

been used to enhance code comment classification. Pre-

trained models, such as BERT, have been used to classify

code comments more accurately [5] [6]. These models can

capture the semantic and syntactic structures of sentences,

allowing them to understand the context and meaning of

sentences more effectively.

Although prior studies have demonstrated the advantages

of utilizing machine learning algorithms and Bert models to

induct classifiers that categorize code comments into binary

[4] [5] [6] [7] [8] or multi-class [3] [9] [10] categories, to the

best of our knowledge prior research has yet to specifically

address the development of a multi-label classifier for code

comment classification. Therefore, this study aims to bridge

this gap by presenting a novel method for classifying code

comments using a multi-label classifier and the BERT

transformer model.

The main objective that drives the motivation behind this

study is to build a model to classify code comments and

evaluate them. To pursue these objectives, two research

questions (RQs) have been formulated:

RQ1: Can we build a multi-label classification model to

classify code comments?

RQ2: How can we evaluate the accuracy of the classifier?

The remainder of this paper has been divided as follows:

Section II involves a brief overview of classification types

and an understanding of the foundation of machine learning

and deep learning. The related research work is highlighted

in Section III to find the significant gap. Section IV describes

the methodology used in the research. The results and

analysis of the study are reported in Section V. Finally,

Section VI highlights the findings and provides potential

future research areas.

68 Zarah Shibli and Emad Albassam

II. BACKGROUND

Types of Classification

 Classification is a machine learning approach to assign

labels or categories to given input data [11]. Classification is

an important aspect in several domains, such as data mining,

computer vision, and natural language processing. There are

different types of classification techniques, such as binary,

multi-class [12], and multi-label [13], each serving distinct

purposes. Binary classification is the task of separating data

instances into two classes or categories. It has various

applications, including spam detection, fraud detection, and

sentiment analysis. Multi-class classification extends the

binary classification problem to instances with more than two

classes. The goal is to assign a single label to each data

instance from a predefined set of classes. Handwritten digit

recognition, text categorization, and image classification are

examples of multi-class classification applications.

Furthermore, there is the concept of multi-label classification,

which involves assigning multiple labels to each data

instance. One example is tagging a blog post, where a post

can have multiple labels such as ”technology,” ”art,” and

”travel.”.

Machine Learning and Deep Learning

Machine learning is a field that involves methods for

automatically detecting patterns in data and then utilizing

those patterns to make predictions or decisions [13].

 Deep learning is a subdivision area of machine learning

that has gained much attention recently due to its ability to

address complex tasks such as speech analysis, image

recognition, and natural language processing. Deep learning

models use artificial neural networks with multiple layers and

millions of parameters to construct hierarchical

representations from raw data. Recurrent and Convolutional

Neural Networks have been successfully adopted in deep

learning architectures for solving classification tasks [14].

In recent years, innovative architectures like BERT,

which stands for Bidirectional Encoder Representations from

Transformers, have further enhanced the capabilities of deep

learning models. Based on the transformer architecture,

BERT has achieved significant breakthroughs in natural

language processing tasks. By undergoing pre-training on

large amounts of unlabeled text data, BERT has become a

powerful tool for various classification tasks, including

sentiment analysis, question answering, and named entity

recognition [15]

III. LITERATURE REVIEW

Many researchers have investigated the code comments

classification task, considering various aspects. These studies

have contributed to understanding the different classifiers and

their influence on the classification of code comments. The

relevant literature can be categorized into two groups

applicable to our research: (i) Utilize binary classifiers for

categorizing code comments. (ii) Utilize multi-class

classifiers for categorizing code comments.

A. Utilize binary classifiers for categorizing code

comments

Much of the literature on code comment classification

tasks has concentrated on binary classifiers. The primary

objective of these studies has been to create binary classifiers

based on the NLBSE2023 dataset. The dataset comprises

code comments for Java, Python, and Pharo programming

languages. One study [7] proposed a strategy for classifying

code comments using the NLBSE2023 dataset. They

employed various machine learning classification algorithms,

including two versions of Naive Bayes (Multinomial,

Bernoulli), Linear Support Vector Classifier, Decision Tree,

Random Forest, K-Nearest Neighbors, Logistic Regression,

and Multi-Layer Perceptron for training and evaluation.

Another study [5] and [6] utilized the BERT model to develop

multiple binary classifiers for the same task. Liu et al. [5]

utilized the CodeT5 pre-trained language model to construct

a classifier for code comment classification. Al-Kaswan et al.

[6] proposed the STACC model by selecting the all-mpnet-

base-v2 model for training. Research by Beck et al. [4] aimed

to create a classifier for categorizing students’ Python code

into sufficient and insufficient categories. Multinomial Naive

Bayes and Random Forest classifier models were used. Rani

et al. [8] focused on programming languages like Python,

Java, and Smalltalk. Their dataset included six Java, seven

Python, and seven Smalltalk projects. They used three

different machine learning models: Naive Bayes, J48, and

Random Forest.

B. Utilize multi-class classifiers for categorizing code

comments

In the area of multi-class classifiers, Niazi et al. [3] used

a dataset from 70 web development projects to develop an

approach for classifying code comments from student or

novice programmers. Three machine learning models were

employed in their experiments: Support Vector Machine

Classifier, Decision Tree, and Random Forest. The research

objective of Pascarella and Bacchelli [9] was to classify Java

program code comments using data from six open-source

projects. The dataset consisted of boolean and numeric

features, approximately 15,000 comment blocks, and

definitions for 16 subcategories. The following ma- chine

learning classifiers were assessed: probabilistic classifiers

such as Naive Bayes Multinominal and decision tree

techniques such as J48 and Random Forest. Zhang et al. [10]

developed a Python code comment classification approach

using seven open- source GitHub projects. There are 11

categories in the dataset: metadata, summary, usage,

parameters, and others. They utilized machine learning

models such as Decision Tree and Naive Bayes. Table I

provides an overview of the research studies.

 Previous research has shown the benefits of using

machine learning and Bert models to create classifiers that

categorize code comments into binary or multi-class

classifications. However according to our knowledge, no

previous study has focused on developing a multi-label

classifier for code comment classification.

A Multi-Label Code Comment Classifier using BERT 69

This paper introduces a new approach to the code comment

classification task using a multi-label classifier and the BERT

transformer model.

IV. METHODOLOGY

The research follows a specific methodology involving

data selection, data preparation, data splitting, model

selection, training the model, and evaluating the model’s

performance. Figure 1 depicts an outline of our methodology.

A. Dataset

Our approach is based on the NLBSE20241 dataset. It

consists of comments written in Python, Java, and Pharo

programming languages. The Python dataset is divided into

five categories: Parameters, Expand, Usage,

DevelopmentNotes, and Summary. The Pharo dataset

1 https://github.com/nlbse2024/code-comment-classification/tree/main

comprises seven categories: Classreferences, Col- laborators,

Example, Intent, Keyimplementationpoints, Keymes- sages,

and Responsibilities. The Java dataset encompasses seven

categories: Expand, Ownership, Pointer, Deprecation,

Rational, Summary, and Usage.

 The dataset is designed in CSV format. As shown in Table

II, each row represents a sentence, and each sentence contains

six columns as follows:

• comment sentence id: represents the unique ID of

the sentence

• class: refers to the name of the source code file

containing the sentence.

• comment sentence: is the actual string of the

sentence, and it is part of a class comment that may

have multiple lines.

• partition: determines the dataset split into training

and testing, where 0 represents training instances and

1 represents testing instances.

• instance type: indicates whether an instance belongs

to a given category, with 0 signifying negative

instances and 1 indicating positive instances.

• category: represents the category.

B. Data Preparation

The NLBSE dataset initially intended for a binary

classification task, underwent modifications to make it

suitable for a multi-label task. Five rows originally

represented each instance in the dataset, each indicating the

presence or absence of the instance in a particular category.

This concept is illustrated in Table III. We condensed each

instance into a single row to adapt the Dataset for multi-label

classification. Furthermore, we transformed each category

into a column within the dataset. Therefore, for each

instance, a value of 1 was assigned if it belonged to a

specific category and 0 if it did not. Table IV showcases a

sample from the modified dataset.

Paper Dataset Classifier Type Algorithm type

Amila Indika et al. [7] NLBSE2023 Binary Machine Learning

Liu et al. [5] NLBSE2023 Binary BERT

Al-Kaswan et al. [6] NLBSE2023 Binary BERT

Beck et al. [4] Student Codes Binary Machine Learning

Niazi et al. [3] 70 web development projects Multi-classes Machine Learning

Rani et al. [8] 6 Java, 7 Python and 7 Smalltalk projects Binary Machine Learning

Pascarella & Bacchelli [9] 6 Java projects Multi-classes Machine Learning

Zhang et al. [10] 7 Python projects Multi-classes Machine Learning

Fig I Methodology

TABLE I Overview of the Research Studies

70 Zarah Shibli and Emad Albassam

C. Data Splitting

 The original dataset was prepared for binary

classification. Sometimes, a sentence could appear in the

training and testing sets under different categories. Since we

concentrated on multi-label tasks and were required to

consider all categories for a single sentence, we did not

employ "partition" for data splitting. Once the data

preparation step was completed, the dataset was divided into

two sets: 70\% of the data was allocated for training. The

remaining 30\% was dedicated to testing. Table V shows the

number of instances (N) and ratio (\%) of each category used

for training and testing.

D. Model

The main model utilized in this project was BERT,

specifically the bert-base-uncased 2 version. Our approach

involved fine-tuning BERT to classify comments. It is worth

noting that this version is utilized as it does not differentiate

between cases, considering "english" and "English" to be

identical. The base BERT model consists of 12 transformer

layers, 12 attention heads, and a hidden size of 768. Despite

being a smaller version of BERT, it retains robust language

comprehension capabilities, crucial for accurately interpreting

code comments [15].

E. Proposed Model Architecture

RQ1: Can we build a multi-label classification model to

classify code comments?

We applied the BERT model to the NLBSE2024 dataset to

answer this research question. To optimize BERT for

classifying code comments, the main objective is to modify the

pre-trained BERT model to accurately predict a code

comment's category. The presented model consists of multiple

steps as described below:

1. Tokenization of comments: The first step is to break

2 https://huggingface.co/bert-base-uncased

down the code comments into smaller units called

Word- Pieces using BERT’s tokenization technique.

Each Word-Piece rep- resents a token and is assigned

an index from BERT’s vocabulary. Unique tokens

such as [CLS] (for the start of a sequence), [SEP] (to

separate two sequences), and [PAD] (for padding) are

added to handle comments of varying lengths.

2. Bert Model: To build a classifier, a multi-label

classification layer, such as a fully connected layer, is

added to the BERT model. This layer will produce

probability scores for each label.

3. Output: The probability of a label surpassing a

specific threshold is then examined. If it does, that

label is assigned as the predicted label for the code

comment.

4. Conversion of the predicted label: In this step, the

predicted label is converted from a numeric

representation to its corresponding actual category.

 Figure 2 visually represents the proposed model

architecture, illustrating the steps involved.

F. Implementation Details

 To train the BERT model, we utilized the Python

development environment provided by Kaggle. For faster

training, the runtime type is set to GPU. The maximum

sequence length is defined as 200 tokens, while both the

training batch size and validation batch size are set to 64.

The desired number of training epochs is 10, the learning

rate is 1.71e-05.

V. RESULTS AND DISCUSSION

A. Evaluation Metrics

RQ2: How can we evaluate the accuracy of the classifier?

comment sentence id class comment_sentence partition instance_type category

2880 FollowedBy expression matches at the current position. 0 0 Parameters

 comment sentence id comment_sentence partition instance_type category

1 2880 expression matches at the current position. 0 0 Parameters

2 2880 expression matches at the current position. 0 0 Expand

3 2880 expression matches at the current position. 0 1 Usage

4 2880 expression matches at the current position. 0 1 DevelopmentNotes

5 2880 expression matches at the current position. 0 1 Summary

TABLE III Representation of One Instance from Original Python Dataset

TABLE II Sample from Original Python Dataset

A Multi-Label Code Comment Classifier using BERT 71

In order to provide an answer to this research question,

various evaluation metrics such as Precision, Recall, and F1-

score are used.

 Precision is a performance measurement used in

classification tasks to assess the accuracy of a model's

positive predictions. It is calculated by dividing the total

number of positive predictions (TP) by the number of actual

positive predictions (TP and FP). Precision indicates the

reliability of a model's positive predictions, with higher

values implying a lower rate of false positives. Precision

formula is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

Recall is another performance metric employed in

classification tasks to evaluate a model's ability to identify all

positive instances in a dataset correctly. It is derived by

dividing the number of correct positive (TP) predictions by

the total number of correct positives (TP) and false negatives

(FN). Recall signifies the sensitivity of a model in identifying

positive instances, with higher values suggesting a lower rate

of false negatives. Recall formula is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

 The F1-score, a combined metric of precision and recall,

evaluates a model's performance in a classification task. It

takes into consideration the trade-off between recall and

precision by computing the harmonic mean of both of them.

The F1-score, which ranges from 0 to 1, with 1 indicating the

highest performance, is typically employed when both recall

and precision are important and must be assessed together.

Equation 3 shows the F1-score formula.

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

B. Experiment Results

 We built three models, each one trained for a particular

language. The threshold is a crucial component in a multi-

label classification model. Our study investigates the impact

of different threshold values on the resulting outcomes.

Specifically, we experimented with three threshold values:

0.25, 0.5, and 0.75.

comment id comment_sentence DevelopmentNotes Expand Parameters Summary Usage

2880 expression matches at the current position. 1 0 0 1 1

Language Category Train Test

 Number of Instances (N) Instances Ratio (%) Number of Instances (N) Instances Ratio (%)

Python

DevelopmentNotes 220 12.30 92 11.99

Expand 352 19.69 152 19.82

Parameters 546 30.54 248 32.33

Summary 318 17.79 136 17.73

Usage 562 31.43 238 31.03

 1788 767

Pharo

Classreferences 57 4.62 20 3.77

Collaborators 87 7.04 40 7.55

Example 510 41.30 238 44.91

Intent 149 12.06 69 13.02

Keyimplementationpoints 174 14.09 58 10.94

Keymessages 220 17.81 85 16.04

Responsibilities 250 20.24 86 16.23

 1235 530

Java

Expand 563 7.62 265 8.37

Ownership 386 5.22 164 5.18

Pointer 964 13.05 406 12.82

Deprecation 129 1.75 51 1.61

Rational 380 5.14 148 4.67

Summary 3167 42.87 1390 43.89

Usage 2091 28.30 878 27.72

 7388 3167

TABLE IV Sample from Modified Python Dataset

TABLE V Number of Instances Used for Training and Evaluation

72 Zarah Shibli and Emad Albassam

 The results presented in Table VI provide valuable

insights into the outcomes of our model. The threshold value

determines the minimum confidence required for a prediction

to be classified as positive.

 Figure 3 presents the model's accurate and erroneous

classification examples across various programming

languages, offering insights into its performance. In Python,

the model effectively recognized comments summarizing

code functionality, exemplified by Example 1. However, in

Example 2, a comment instructing to 'Fit the model according

to the given training data' was mislabeled as

"DevelopmentNotes" and "Expand" instead of the expected

"Summary" and "Usage." In Java, the model correctly

categorized a comment displayed in Example 3,

'java.lang.Object#toString()' as "Pointer," aligning with

expectations. Nevertheless, it misclassified a comment in

Example 4 mentioning the '{@link java.text.Collator} class'

as "Summary" rather than "Pointer," which fails to recognize

its function in directing readers to specific class

documentation, despite containing the @link keyword, which

indicates the "Pointer" category. In Pharo, the model

accurately classified a comment provided in Example 5 as

"Example," but misidentified a comment in Example 6, "Add

offset values to classPool," as both "Keymessages" and

"Example" instead of the expected

"Keyimplementationpoints," indicating a misinterpretation of

its implementation instructions. These findings highlight the

model's strengths in certain areas and reveal opportunities for

improvement, particularly in accurately distinguishing

between categories and interpreting instructional content.

C. Results Discussion

Impact of Thresholds on Model Performance

 When analyzing the results in Python, the category

"Expand" achieved the same F1 score when the threshold was

set to 0.25 and 0.5. On the other hand, the categories

"Parameters" and "Usage" obtained a higher F1 score when

the threshold was set to 0.5, showing an increase of 0.02 and

0.01, respectively, compared to the results obtained with a

threshold of 0.25. The categories "DevelopmentNotes" and

"Summary" achieved the best F1 score when the threshold

was set to 0.25.

 In Pharo, all categories achieved a high F1 score when the

threshold was set to 0.25.

 In Java, the categories "Ownership," "Pointer," and

"Summary" obtained the same score regardless of the

threshold value. The category "Deprecation" scored high with

thresholds of 0.5 and 0.75. The category "Expand" achieved

a high score with a threshold of 0.25. The categories

"Rational" and "Usage" obtained a high score when the

threshold was set to 0.5.

 Overall, the F1 scores were generally higher across all

languages when the threshold was set to 0.25 on average.

Impact of Programming Languages on Model

Performance

 It is important to note that the dataset utilized in our

study was unbalanced. In the Python programming

Fig II Proposed Model Architecture

A Multi-Label Code Comment Classifier using BERT 73

language, the DevelopmentNote category had fewer

instances. Additionally, the Parameters category exhibited

repeated the unique keyword "default."

 In the Pharo programming language, the Classreferences,

Collaborators, and Keyimplementationpoints categories had

a relatively smaller number of instances compared to other

categories. However, the Example category displayed a

significant number of instances, some of which included the

keyword "example"

In the case of Java, high f1-scores were achieved in the

Ownership, Pointer, Summary, and Usage categories. The

Ownership category exhibited several distinct keywords such

as implementation, contributors, initial, api, and @author.

The Pointer category frequently reiterated words like @link,

@see, and @code in the comments. The Usage category

encompassed the words @param and @return. Finally, the

Deprecation category featured unique words like @since and

@deprecated.

Overall, the findings of this study shed light on various

aspects of the model's performance and provide valuable

insights into the characteristics of different programming

languages.

 Considering all categories, our model attains an average

F1 score of 0.64. The proposed model's performance is

moderate, with specific categories performing better than

others.

Impact of Bias on Model Results

 The performance of BERT models varies when

classifying code comments in Python, Pharo, and Java. The

study indicated that the imbalance in the NLBSE dataset

reported by \cite{indika2023performance} resulted in data

bias issues that affected the model's performance. In order to

address potential biases between programming languages,

separate models were developed for each language. In

Python, categories like "DevelopmentNotes" have low F1

scores due to insufficient data, while "Expand,"

"Parameters," "Summary," and "Usage" perform better but

show drops at higher thresholds, indicating model uncertainty

or overfitting. In Pharo, difficulties arise with

"Classreferences" and "Collaborators," and performance

declines at higher thresholds, pointing to data imbalance

issues. In contrast, Java demonstrated consistently high

performance, particularly in categories such as "Ownership"

and "Pointer," indicating robust training data. To address

biases and enhance performance, it is recommended to

balance the datasets, adjust thresholds, and improve the

model.

D. Comparison with Prior Research

 We compared our results with the results of prior

approaches that utilize the Bert and traditional machine

learning models on the same dataset used in this paper for a

consistent and fair comparison. Al-Kaswan et al. [6] achieved

a higher average F1 score of 0.74 using a binary classifier for

 Threshold = 0.25 Threshold = 0.5 Threshold = 0.75

 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Python

DevelopmentNotes 0.27 0.25 0.26 0.37 0.08 0.13 0.00 0.00 0.00

Expand 0.45 0.64 0.53 0.55 0.51 0.53 0.68 0.37 0.48

Parameters 0.65 0.81 0.72 0.72 0.76 0.74 0.79 0.67 0.72

Summary 0.57 0.57 0.57 0.64 0.44 0.52 0.78 0.39 0.52

Usage 0.78 0.72 0.75 0.86 0.68 0.76 0.89 0.64 0.75

 0.54 0.60 0.56 0.63 0.49 0.54 0.63 0.41 0.49

Pharo

Classreferences 0.35 0.30 0.32 0.00 0.00 0.00 0.00 0.00 0.00

Collaborators 0.41 0.35 0.38 0.00 0.00 0.00 0.00 0.00 0.00

Example 0.84 0.87 0.85 0.91 0.79 0.84 0.96 0.73 0.83

Intent 0.71 0.81 0.76 0.88 0.65 0.75 1.00 0.14 0.25

Keyimplementationpoints 0.35 0.79 0.48 0.53 0.29 0.38 0.00 0.00 0.00

Keymessages 0.46 0.85 0.60 0.60 0.58 0.59 1.00 0.25 0.40

Responsibilities 0.49 0.73 0.59 0.77 0.47 0.58 0.91 0.12 0.21

 0.52 0.67 0.57 0.53 0.40 0.45 0.55 0.18 0.24

Java

Expand 0.63 0.52 0.57 0.68 0.45 0.54 0.73 0.32 0.45

Ownership 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Pointer 0.90 0.90 0.90 0.93 0.87 0.90 0.94 0.86 0.90

Deprecation 0.82 0.78 0.80 0.85 0.78 0.82 0.97 0.71 0.82

Rational 0.51 0.50 0.50 0.62 0.43 0.51 0.72 0.35 0.47

Summary 0.90 0.95 0.93 0.91 0.94 0.93 0.92 0.93 0.93

Usage 0.87 0.93 0.90 0.90 0.92 0.91 0.92 0.89 0.90

 0.80 0.80 0.80 0.84 0.77 0.80 0.89 0.72 0.78

Average 0.62 0.69 0.64 0.67 0.55 0.60 0.69 0.44 0.50

TABLE VI Results

74 Zarah Shibli and Emad Albassam

code comment classification. Their model better distinguished

between positive and negative comments. Furthermore, we

also compared our results with another related work [5] that

employed a binary classifier with the Bert model for code

comment classification. They achieved an average F1 score of

0.66. In another study [7], the authors used a Linear Support

Vector Machine and obtained an F1 score of 0.55. However,

it is important to note that their models focused on binary

classification, categorizing each comment into one of two

classes. In contrast, our approach used multi-label

classification, where a comment can simultaneously be

associated with multiple labels. This different perspective may

explain the slight decrease in the observed classification

performance.

Table VII displays the performance of our proposed model

compared to the related works. These comparisons indicate

that the performance of the Bert model in code comment

classification can vary depending on different factors,

including the type of classifier that is selected, whether it is

binary or multi-label, the number of instances within each

category, and whether the programming language the code is

written in follows to a particular structure. Additionally, Bert

demonstrated competence in comparison to traditional

machine learning approaches in the context of code comment

classification.

VI. CONCLUSION

 In this paper, we successfully implemented a code

comment classification system using BERT. Unlike prior

works which investigated binary and multi-class

classifications, we consider that a single comment can be

classified into multiple labels. Therefore, we implemented a

multi-label comment classifier in which a BERT model is

trained on a labeled dataset of code comments and achieved

satisfactory results regarding multi-label classification. Our

model accurately classified code comments into multiple

categories, which would assist developers in understanding

and organizing code comments more efficiently. Our findings

show that the model's results are affected by the underlying

programming language syntax for comments. In particular,

languages such as Java in which distinct comment tags such

as @author, @see, and @code are used have achieved higher

results compared to other languages.

 In terms of directions for future research, we can explore

several aspects to improve our code comment classification

model. Currently, we have focused on code comments in three

programming languages. However, extending the model to

work with code comments written in multiple languages

would be beneficial.

 BERT has released various versions with different

architectures and pre-training methods. Experimenting with

these different versions may lead to improvements in

performance and accuracy. We can compare the performance

of different versions to identify the most suitable one for our

code comment classification task.

Overall, by exploring different languages and trying out

various versions of BERT, we can continue to enhance the

accuracy and applicability of our code comment classification

system.

Fig III . Examples of Model Predictions and Expected Categories for Code Comments

TABLE VII Performance of the Proposed Model Compared to The Related

Works

 Average F1-Score Is Multi-labels?

Liu et al. [5] 0.66 No

Al-Kaswan et al. [6] 0.74 No

Amila Indika et al [7] 0.55 No

Proposed model 0.64 Yes

A Multi-Label Code Comment Classifier using BERT 75

REFERENCES

[1] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D.

Majumder, J. Green, A. Svyatkovskiy, S. Fu, et al.,

"Automating code review activities by large-scale pre-

training," in Proceedings of the 30th ACM Joint

European Software Engineering Conference and

Symposium on the Foundations of Software

Engineering, 2022.

[2] M. Kosti´c, A. Srbljanovi´c, V. Batanovi´c, and B.

Nikoli´c,, "Code comment classification taxonomies,"

2022.

[3] T. Niazi, T. Das, G. Ahmed, S. M.Waqas, S. Khan, S.

Khan, A. A. Abdelatif, and S. Wasi, "“Investigating

novice developers’ code commenting trends using

machine learning techniques," Algorithms, vol. 16, no.

1, p. 53, 2023.

[4] M. J. M.-A. Phyllis Beck and C. Archibald, "“An initial

exploration of machine learning techniques to classify

source code comments in real-time," in 2019 ASEE

Annual Conference & Exposition, 2019.

[5] Y. Li, H. Wang, H. Zhang, and S. H. Tan, "Classifying

code comments via pre-trained programming language

model," pp. 24-27, 2023.

[6] A. Al-Kaswan, M. Izadi, and A. van Deursen, "Stacc:

Code comment classification using

sentencetransformers," 2023 IEEE/ACM 2nd

International Workshop on Natural Language-Based

Software Engineering (NLBSE), pp. 28-31, 2023.

[7] A. Indika, P. Washington, and A. Peruma,

"Performance comparison of binary machine learning

classifiers in identifying code comment types: An

exploratory study," 2023 IEEE/ACM 2nd International

Workshop on Natural Language-Based Software

Engineering (NLBSE), p. 20–23, 2023.

[8] P. Rani, S. Panichella, M. Leuenberger, A. D. Sorbo,

and O. Nierstrasz, "How to identify class comment

types? A multi-language approach for class comment

classification," CoRR, vol. abs/2107.04521, 2021.

[9] L. Pascarella and A. Bacchelli, "Classifying code

comments in java open-source software systems," in

2017 IEEE/ACM 14th International Conference on

Mining Software Repositories (MSR), 2017.

[10] J. Zhang, L. Xu, and Y. Li, "Classifying python code

comments based on supervised learning," in

International Conference on Web Information Systems

and Applications, 2018.

[11] D. Dietrich, B. Heller, B.Yang, et al., Data science &

big data analytics: discovering, analyzing, visualizing

and presenting data, Wiley, 2015.

[12] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar,

Introduction to Data Mining, 2nd ed., Pearson, 2018.

[13] K. P. Murphy, Machine learning: A probabilistic

perspective, The MIT Press, 2012.

[14] Y. LeCun,Y. Bengio, and G. Hinton, "Deep learning,"

vol. 521, nature, 2015, p. 436–444.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

"Bert: Pre-training of deep bidirectional transformers

for language understanding," arXiv preprint

arXiv:1810.04805, 2018.

76 Zarah Shibli and Emad Albassam

 التسميات باستخدام المحولات المدربة مسبقاً متعددةصنيف التعليقات البرمجية ت

 زرعه شبلي، عماد البسام

 المملكة العربية السعودية جدة،كلية الحاسبات وتقنية المعلومات، جامعة الملك عبد العزيز، الحاسبات،قسم علوم

zshibli0002@stu.kau.edu.sa, ealbassam@kau.edu.sa

تعد التعليقات البرمجية من الأسس في تطوير البرمجيات، ومع التزايد الكبير في عدد الأكواد البرمجية تتجلى أهمية تصنيف التعليقات . المستخلص

لتسميات البرمجية في تسهيل صيانة البرمجيات والتي تساعد المطورين من فهم الأكواد البرمجية بدقة وسهولة. تقدم هذه الدراسة منهجًا يستخدم ا

و نموذج المحولات المدربة مسبقاً لتصنيف التعليقات البرمجية في ثلاث لغات برمجة: بايثون، فارو، جافا. وقد أظهر النموذج المقترح المتعددة

ا يعمل النهج المقترح على تبسيط فهم وإدارة التعليقات البرمجية لتعزز كفاءة وإنتاجية تطوير البرمجيات. بالإضافة إلى ذلك، . كم0.64نسبة تبلغ

 يمكن توسيع النهج المقترح ليشمل لغات البرمجة الأخرى ويشكل الأساس للأبحاث المستقبلية حول تصنيف التعليقات البرمجية.
 التعليقات البرمجية، التصنيف، معالجة اللغات الطبيعية، التعلم العميق، هندسة البرمجيات ـــ المفتاحية ت الكلما

mailto:zshibli0002@stu.kau.edu.sa
mailto:ealbassam@kau.edu.sa

