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Abstract— Code comments play an essential role in software development by providing documentation, explanations, 

and clarifications for program logic and functionality. It is crucial to effectively classify code comments to improve 

software maintainability and collaboration in the face of a growing amount of code. Developers can easily identify and 

comprehend different code sections’ purpose, behavior, and requirements by accurately classifying code comments. 

Although there are prior research efforts in the area of code comment classification, they are restricted to binary or 

multi-class classification. With this regard, this paper advances the literature in the area of code comment classification 

by presenting a novel approach that incorporates multi-label classification to enhance code comment classification in 

three programming languages: Python, Pharo, and Java. We employ BERT, a widely used language model, and 

achieve an F1 score of 0.64 through experimentation. Our proposed approach facilitates the understanding and 

managing code comments, making software development more efficient and productive. Additionally, our approach 

can be extended to other programming languages and serve as a foundation for further research in code comment 

classification. 
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I. INTRODUCTION  

Code comments are essential components in software 

development because they give additional information about 

the code's purpose and functionality. The advantages of 

having a common category for code comments include 

increased code understanding, maintenance, and developer 

collaboration. 

However, maintaining and classifying code comments 

may be difficult, particularly in large-scale software systems. 

Manually classifying code comments takes effort and is prone 

to human mistakes [1]. To address this problem, researchers 

have explored machine learning algorithms to automatically 

classify code comments in real-time. Prior works have 

introduced various taxonomies that categorize code 

comments based on their content and purpose [2]. Several 

studies have investigated the trends and patterns in code 

commenting behavior using machine learning algorithms 

with satisfactory results in effectively categorizing code 

comments [3] [4]. 

Recent advances in deep learning techniques have also 

been used to enhance code comment classification. Pre-

trained models, such as BERT, have been used to classify 

code comments more accurately [5] [6]. These models can 

capture the semantic and syntactic structures of sentences, 

allowing them to understand the context and meaning of 

sentences more effectively. 

Although prior studies have demonstrated the advantages 

of utilizing machine learning algorithms and Bert models to 

induct classifiers that categorize code comments into binary 

[4] [5] [6] [7] [8] or multi-class [3] [9] [10] categories, to the 

best of our knowledge prior research has yet to specifically 

address the development of a multi-label classifier for code 

comment classification. Therefore, this study aims to bridge 

this gap by presenting a novel method for classifying code 

comments using a multi-label classifier and the BERT 

transformer model. 

The main objective that drives the motivation behind this 

study is to build a model to classify code comments and 

evaluate them. To pursue these objectives, two research 

questions (RQs) have been formulated:  

RQ1: Can we build a multi-label classification model to 

classify code comments?  

RQ2: How can we evaluate the accuracy of the classifier? 

The remainder of this paper has been divided as follows: 

Section II involves a brief overview of classification types 

and an understanding of the foundation of machine learning 

and deep learning. The related research work is highlighted 

in Section III to find the significant gap. Section IV describes 

the methodology used in the research. The results and 

analysis of the study are reported in Section V. Finally, 

Section VI highlights the findings and provides potential 

future research areas. 
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II. BACKGROUND  

Types of Classification 

 Classification is a machine learning approach to assign 

labels or categories to given input data [11]. Classification is 

an important aspect in several domains, such as data mining, 

computer vision, and natural language processing. There are 

different types of classification techniques, such as binary, 

multi-class [12], and multi-label [13], each serving distinct 

purposes. Binary classification is the task of separating data 

instances into two classes or categories. It has various 

applications, including spam detection, fraud detection, and 

sentiment analysis. Multi-class classification extends the 

binary classification problem to instances with more than two 

classes. The goal is to assign a single label to each data 

instance from a predefined set of classes. Handwritten digit 

recognition, text categorization, and image classification are 

examples of multi-class classification applications. 

Furthermore, there is the concept of multi-label classification, 

which involves assigning multiple labels to each data 

instance. One example is tagging a blog post, where a post 

can have multiple labels such as ”technology,” ”art,” and 

”travel.”. 

Machine Learning and Deep Learning 

Machine learning is a field that involves methods for 

automatically detecting patterns in data and then utilizing 

those patterns to make predictions or decisions [13]. 

 Deep learning is a subdivision area of machine learning 

that has gained much attention recently due to its ability to 

address complex tasks such as speech analysis, image 

recognition, and natural language processing. Deep learning 

models use artificial neural networks with multiple layers and 

millions of parameters to construct hierarchical 

representations from raw data. Recurrent and Convolutional 

Neural Networks have been successfully adopted in deep 

learning architectures for solving classification tasks [14]. 

In recent years, innovative architectures like BERT, 

which stands for Bidirectional Encoder Representations from 

Transformers, have further enhanced the capabilities of deep 

learning models. Based on the transformer architecture, 

BERT has achieved significant breakthroughs in natural 

language processing tasks. By undergoing pre-training on 

large amounts of unlabeled text data, BERT has become a 

powerful tool for various classification tasks, including 

sentiment analysis, question answering, and named entity 

recognition [15] 

III. LITERATURE REVIEW 

Many researchers have investigated the code comments 

classification task, considering various aspects. These studies 

have contributed to understanding the different classifiers and 

their influence on the classification of code comments. The 

relevant literature can be categorized into two groups 

applicable to our research: (i) Utilize binary classifiers for 

categorizing code comments. (ii) Utilize multi-class 

classifiers for categorizing code comments. 

A. Utilize binary classifiers for categorizing code 

comments 

Much of the literature on code comment classification 

tasks has concentrated on binary classifiers. The primary 

objective of these studies has been to create binary classifiers 

based on the NLBSE2023 dataset. The dataset comprises 

code comments for Java, Python, and Pharo programming 

languages. One study [7] proposed a strategy for classifying 

code comments using the NLBSE2023 dataset. They 

employed various machine learning classification algorithms, 

including two versions of Naive Bayes (Multinomial, 

Bernoulli), Linear Support Vector Classifier, Decision Tree, 

Random Forest, K-Nearest Neighbors, Logistic Regression, 

and Multi-Layer Perceptron for training and evaluation. 

Another study [5] and [6] utilized the BERT model to develop 

multiple binary classifiers for the same task. Liu et al. [5] 

utilized the CodeT5 pre-trained language model to construct 

a classifier for code comment classification. Al-Kaswan et al. 

[6] proposed the STACC model by selecting the all-mpnet-

base-v2 model for training. Research by Beck et al. [4] aimed 

to create a classifier for categorizing students’ Python code 

into sufficient and insufficient categories. Multinomial Naive 

Bayes and Random Forest classifier models were used. Rani 

et al. [8] focused on programming languages like Python, 

Java, and Smalltalk. Their dataset included six Java, seven 

Python, and seven Smalltalk projects. They used three 

different machine learning models: Naive Bayes, J48, and 

Random Forest. 

B. Utilize multi-class classifiers for categorizing code 

comments 

In the area of multi-class classifiers, Niazi et al. [3] used 

a dataset from 70 web development projects to develop an 

approach for classifying code comments from student or 

novice programmers. Three machine learning models were 

employed in their experiments: Support Vector Machine 

Classifier, Decision Tree, and Random Forest. The research 

objective of Pascarella and Bacchelli [9] was to classify Java 

program code comments using data from six open-source 

projects. The dataset consisted of boolean and numeric 

features, approximately 15,000 comment blocks, and 

definitions for 16 subcategories. The following ma- chine 

learning classifiers were assessed: probabilistic classifiers 

such as Naive Bayes Multinominal and decision tree 

techniques such as J48 and Random Forest. Zhang et al. [10] 

developed a Python code comment classification approach 

using seven open- source GitHub projects. There are 11 

categories in the dataset: metadata, summary, usage, 

parameters, and others. They utilized machine learning 

models such as Decision Tree and Naive Bayes. Table I 

provides an overview of the research studies.  

 Previous research has shown the benefits of using 

machine learning and Bert models to create classifiers that 

categorize code comments into binary or multi-class 

classifications. However according to our knowledge, no 

previous study has focused on developing a multi-label 

classifier for code comment classification. 
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This paper introduces a new approach to the code comment 

classification task using a multi-label classifier and the BERT 

transformer model. 

 

IV. METHODOLOGY 

The research follows a specific methodology involving 

data selection, data preparation, data splitting, model 

selection, training the model, and evaluating the model’s 

performance. Figure 1 depicts an outline of our methodology. 

A. Dataset 

Our approach is based on the NLBSE20241 dataset. It 

consists of comments written in Python, Java, and Pharo  

programming languages. The Python dataset is divided into 

five categories: Parameters, Expand, Usage, 

DevelopmentNotes, and Summary. The Pharo dataset 

 
1 https://github.com/nlbse2024/code-comment-classification/tree/main 

comprises seven categories: Classreferences, Col- laborators, 

Example, Intent, Keyimplementationpoints, Keymes- sages, 

and Responsibilities. The Java dataset encompasses seven 

categories: Expand, Ownership, Pointer, Deprecation, 

Rational, Summary, and Usage. 

 The dataset is designed in CSV format. As shown in Table 

II, each row represents a sentence, and each sentence contains 

six columns as follows: 

• comment sentence id: represents the unique ID of 

the sentence 

• class: refers to the name of the source code file 

containing the sentence. 

• comment sentence: is the actual string of the 

sentence, and it is part of a class comment that may 

have multiple lines. 

• partition: determines the dataset split into training 

and testing, where 0 represents training instances and 

1 represents testing instances. 

• instance type: indicates whether an instance belongs 

to a given category, with 0 signifying negative 

instances and 1 indicating positive instances. 

• category: represents the category. 

 

B. Data Preparation 

The NLBSE dataset initially intended for a binary 

classification task, underwent modifications to make it 

suitable for a multi-label task. Five rows originally 

represented each instance in the dataset, each indicating the 

presence or absence of the instance in a particular category. 

This concept is illustrated in Table III. We condensed each 

instance into a single row to adapt the Dataset for multi-label 

classification. Furthermore, we transformed each category 

into a column within the dataset. Therefore, for each 

instance, a value of 1 was assigned if it belonged to a 

specific category and 0 if it did not. Table IV showcases a 

sample from the modified dataset. 

Paper Dataset Classifier Type Algorithm type 

Amila Indika et al. [7] NLBSE2023 Binary Machine Learning 

Liu et al. [5] NLBSE2023 Binary BERT 

Al-Kaswan et al. [6] NLBSE2023 Binary BERT 

Beck et al. [4] Student Codes Binary Machine Learning 

Niazi et al. [3] 70 web development projects Multi-classes Machine Learning 

Rani et al. [8] 6 Java, 7 Python and 7 Smalltalk projects Binary Machine Learning 

Pascarella & Bacchelli [9] 6 Java projects Multi-classes Machine Learning 

Zhang et al. [10] 7 Python projects Multi-classes Machine Learning 

 

 

 

Fig  I Methodology 

 

TABLE  I Overview of the Research Studies 
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C. Data Splitting 

 The original dataset was prepared for binary 

classification. Sometimes,  a sentence could appear in the 

training and testing sets under different categories. Since we 

concentrated on multi-label tasks and were required to 

consider all categories for a single sentence, we did not 

employ "partition" for data splitting. Once the data 

preparation step was completed, the dataset was divided into 

two sets: 70\% of the data was allocated for training. The 

remaining 30\% was dedicated to testing. Table V shows the 

number of instances (N) and ratio (\%) of each category used 

for training and testing. 

 

D. Model 

The main model utilized in this project was BERT, 

specifically the bert-base-uncased 2  version. Our approach 

involved fine-tuning BERT to classify comments. It is worth 

noting that this version is utilized as it does not differentiate 

between cases, considering "english" and "English" to be 

identical. The base BERT model consists of 12 transformer 

layers, 12 attention heads, and a hidden size of 768. Despite 

being a smaller version of BERT, it retains robust language 

comprehension capabilities, crucial for accurately interpreting 

code comments  [15]. 

 

E. Proposed Model Architecture 

RQ1: Can we build a multi-label classification model to 

classify code comments?  

We applied the BERT model to the NLBSE2024 dataset to 

answer this research question. To optimize BERT for 

classifying code comments, the main objective is to modify the 

pre-trained BERT model to accurately predict a code 

comment's category. The presented model consists of multiple 

steps as described below: 

1. Tokenization of comments: The first step is to break 

 
2 https://huggingface.co/bert-base-uncased 

down the code comments into smaller units called 

Word- Pieces using BERT’s tokenization technique. 

Each Word-Piece rep- resents a token and is assigned 

an index from BERT’s vocabulary. Unique tokens 

such as [CLS] (for the start of a sequence), [SEP] (to 

separate two sequences), and [PAD] (for padding) are 

added to handle comments of varying lengths. 

2. Bert Model: To build a classifier, a multi-label 

classification layer, such as a fully connected layer, is 

added to the BERT model. This layer will produce 

probability scores for each label. 

3. Output: The probability of a label surpassing a 

specific threshold is then examined. If it does, that 

label is assigned as the predicted label for the code 

comment. 

4. Conversion of the predicted label: In this step, the 

predicted label is converted from a numeric 

representation to its corresponding actual category. 

 Figure 2 visually represents the proposed model 

architecture, illustrating the steps involved. 

 

F. Implementation Details 

 To train the BERT model, we utilized the Python 

development environment provided by Kaggle. For faster 

training, the runtime type is set to GPU. The maximum 

sequence length is defined as 200 tokens, while both the 

training batch size and validation batch size are set to 64. 

The desired number of training epochs is 10, the learning 

rate is 1.71e-05. 

V. RESULTS AND DISCUSSION 

A. Evaluation Metrics  

RQ2: How can we evaluate the accuracy of the classifier? 

comment sentence id class comment_sentence partition instance_type category 

2880 FollowedBy expression matches at the current position. 0 0 Parameters 

 

 comment sentence id comment_sentence partition instance_type category 

1 2880 expression matches at the current position. 0 0 Parameters 

2 2880 expression matches at the current position. 0 0 Expand 

3 2880 expression matches at the current position. 0 1 Usage 

4 2880 expression matches at the current position. 0 1 DevelopmentNotes 

5 2880 expression matches at the current position. 0 1 Summary 

 

TABLE  III Representation of One Instance from Original Python Dataset 

TABLE  II Sample from Original Python Dataset  
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In order to provide an answer to this research question, 

various evaluation metrics such as Precision, Recall, and F1-

score are used. 

     

 Precision is a performance measurement used in 

classification tasks to assess the accuracy of a model's 

positive predictions. It is calculated by dividing the total 

number of positive predictions (TP) by the number of actual 

positive predictions (TP and FP). Precision indicates the 

reliability of a model's positive predictions, with higher 

values implying a lower rate of false positives. Precision 

formula is defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                 (1) 

 
 

Recall is another performance metric employed in 

classification tasks to evaluate a model's ability to identify all 

positive instances in a dataset correctly. It is derived by 

dividing the number of correct positive (TP) predictions by 

the total number of correct positives (TP) and false negatives 

(FN). Recall signifies the sensitivity of a model in identifying 

positive instances, with higher values suggesting a lower rate 

of false negatives. Recall formula is defined as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                    (2) 

 
 

 The F1-score, a combined metric of precision and recall, 

evaluates a model's performance in a classification task. It 

takes into consideration the trade-off between recall and 

precision by computing the harmonic mean of both of them. 

The F1-score, which ranges from 0 to 1, with 1 indicating the 

highest performance, is typically employed when both recall 

and precision are important and must be assessed together. 

Equation 3 shows the F1-score formula. 

 

𝐹1 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                        (3) 

 
 

B. Experiment Results   

 We built three models, each one trained for a particular 

language. The threshold is a crucial component in a multi-

label classification model. Our study investigates the impact 

of different threshold values on the resulting outcomes. 

Specifically, we experimented with three threshold values: 

0.25, 0.5, and 0.75. 

comment id comment_sentence DevelopmentNotes Expand Parameters Summary Usage 

2880 expression matches at the current position. 1 0 0 1 1 

 

Language Category Train Test 

  Number of Instances (N) Instances Ratio (%) Number of Instances (N) Instances Ratio (%) 

Python 

DevelopmentNotes 220 12.30 92 11.99 

Expand 352 19.69 152 19.82 

Parameters 546 30.54 248 32.33 

Summary 318 17.79 136 17.73 

Usage 562 31.43 238 31.03 

  1788  767  

Pharo 

Classreferences 57 4.62 20 3.77 

Collaborators 87 7.04 40 7.55 

Example 510 41.30 238 44.91 

Intent 149 12.06 69 13.02 

Keyimplementationpoints 174 14.09 58 10.94 

Keymessages 220 17.81 85 16.04 

Responsibilities 250 20.24 86 16.23 

  1235  530  

Java 

Expand 563 7.62 265 8.37 

Ownership 386 5.22 164 5.18 

Pointer 964 13.05 406 12.82 

Deprecation 129 1.75 51 1.61 

Rational 380 5.14 148 4.67 

Summary 3167 42.87 1390 43.89 

Usage 2091 28.30 878 27.72 

  7388  3167  

 

TABLE  IV Sample from Modified Python Dataset 

TABLE  V Number of Instances Used for Training and Evaluation 
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 The results presented in Table VI provide valuable 

insights into the outcomes of our model. The threshold value 

determines the minimum confidence required for a prediction 

to be classified as positive. 

 Figure 3 presents the model's accurate and erroneous 

classification examples across various programming 

languages, offering insights into its performance. In Python, 

the model effectively recognized comments summarizing 

code functionality, exemplified by Example 1. However, in 

Example 2, a comment instructing to 'Fit the model according 

to the given training data' was mislabeled as 

"DevelopmentNotes" and "Expand" instead of the expected 

"Summary" and "Usage." In Java, the model correctly 

categorized a comment displayed in Example 3, 

'java.lang.Object#toString()' as "Pointer," aligning with 

expectations. Nevertheless, it misclassified a comment in 

Example 4 mentioning the '{@link java.text.Collator} class' 

as "Summary" rather than "Pointer," which fails to recognize 

its function in directing readers to specific class 

documentation, despite containing the @link keyword, which 

indicates the "Pointer" category. In Pharo, the model 

accurately classified a comment provided in Example 5 as 

"Example," but misidentified a comment in Example 6, "Add 

offset values to classPool," as both "Keymessages" and 

"Example" instead of the expected 

"Keyimplementationpoints," indicating a misinterpretation of 

its implementation instructions. These findings highlight the 

model's strengths in certain areas and reveal opportunities for 

improvement, particularly in accurately distinguishing 

between categories and interpreting instructional content. 

 

C. Results Discussion 

Impact of Thresholds on Model Performance 

 When analyzing the results in Python, the category 

"Expand" achieved the same F1 score when the threshold was 

set to 0.25 and 0.5. On the other hand, the categories 

"Parameters" and "Usage" obtained a higher F1 score when 

the threshold was set to 0.5, showing an increase of 0.02 and 

0.01, respectively, compared to the results obtained with a 

threshold of 0.25. The categories "DevelopmentNotes" and 

"Summary" achieved the best F1 score when the threshold 

was set to 0.25. 

 In Pharo, all categories achieved a high F1 score when the 

threshold was set to 0.25. 

 In Java, the categories "Ownership," "Pointer," and 

"Summary" obtained the same score regardless of the 

threshold value. The category "Deprecation" scored high with 

thresholds of 0.5 and 0.75. The category "Expand" achieved 

a high score with a threshold of 0.25. The categories 

"Rational" and "Usage" obtained a high score when the 

threshold was set to 0.5. 

 Overall, the F1 scores were generally higher across all 

languages when the threshold was set to 0.25 on average. 

 

Impact of Programming Languages on Model 

Performance 

 It is important to note that the dataset utilized in our 

study was unbalanced. In the Python programming 

 

Fig  II Proposed Model Architecture 
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language, the DevelopmentNote category had fewer 

instances.  Additionally, the Parameters category exhibited 

repeated the unique keyword "default." 

 In the Pharo programming language, the Classreferences, 

Collaborators, and Keyimplementationpoints categories had 

a relatively smaller number of instances compared to other 

categories. However, the Example category displayed a 

significant number of instances, some of which included the 

keyword "example" 

In the case of Java, high f1-scores were achieved in the 

Ownership, Pointer, Summary, and Usage categories. The 

Ownership category exhibited several distinct keywords such 

as implementation, contributors, initial, api, and @author. 

The Pointer category frequently reiterated words like @link, 

@see, and @code in the comments. The Usage category 

encompassed the words @param and @return. Finally, the 

Deprecation category featured unique words like @since and 

@deprecated.  

Overall, the findings of this study shed light on various 

aspects of the model's performance and provide valuable 

insights into the characteristics of different programming 

languages. 

 Considering all categories, our model attains an average 

F1 score of 0.64. The proposed model's performance is 

moderate, with specific categories performing better than 

others. 

Impact of Bias on Model Results 

 The performance of BERT models varies when 

classifying code comments in Python, Pharo, and Java. The 

study indicated that the imbalance in the NLBSE dataset 

reported by \cite{indika2023performance} resulted in data 

bias issues that affected the model's performance. In order to 

address potential biases between programming languages, 

separate models were developed for each language. In 

Python, categories like "DevelopmentNotes" have low F1 

scores due to insufficient data, while "Expand," 

"Parameters," "Summary," and "Usage" perform better but 

show drops at higher thresholds, indicating model uncertainty 

or overfitting. In Pharo, difficulties arise with 

"Classreferences" and "Collaborators," and performance 

declines at higher thresholds, pointing to data imbalance 

issues. In contrast, Java demonstrated consistently high 

performance, particularly in categories such as "Ownership" 

and "Pointer," indicating robust training data. To address 

biases and enhance performance, it is recommended to 

balance the datasets, adjust thresholds, and improve the 

model. 

D. Comparison with Prior Research 

 We compared our results with the results of prior 

approaches that utilize the Bert and traditional machine 

learning models on the same dataset used in this paper for a 

consistent and fair comparison. Al-Kaswan et al.  [6] achieved 

a higher average F1 score of 0.74 using a binary classifier for 

  Threshold = 0.25 Threshold = 0.5 Threshold = 0.75 

  Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

           

Python 

DevelopmentNotes 0.27 0.25 0.26 0.37 0.08 0.13 0.00 0.00 0.00 

Expand 0.45 0.64 0.53 0.55 0.51 0.53 0.68 0.37 0.48 

Parameters 0.65 0.81 0.72 0.72 0.76 0.74 0.79 0.67 0.72 

Summary 0.57 0.57 0.57 0.64 0.44 0.52 0.78 0.39 0.52 

Usage 0.78 0.72 0.75 0.86 0.68 0.76 0.89 0.64 0.75 

  0.54 0.60 0.56 0.63 0.49 0.54 0.63 0.41 0.49 

           

Pharo 

Classreferences 0.35 0.30 0.32 0.00 0.00 0.00 0.00 0.00 0.00 

Collaborators 0.41 0.35 0.38 0.00 0.00 0.00 0.00 0.00 0.00 

Example 0.84 0.87 0.85 0.91 0.79 0.84 0.96 0.73 0.83 

Intent 0.71 0.81 0.76 0.88 0.65 0.75 1.00 0.14 0.25 

Keyimplementationpoints 0.35 0.79 0.48 0.53 0.29 0.38 0.00 0.00 0.00 

Keymessages 0.46 0.85 0.60 0.60 0.58 0.59 1.00 0.25 0.40 

Responsibilities 0.49 0.73 0.59 0.77 0.47 0.58 0.91 0.12 0.21 

  0.52 0.67 0.57 0.53 0.40 0.45 0.55 0.18 0.24 

           

Java 

Expand 0.63 0.52 0.57 0.68 0.45 0.54 0.73 0.32 0.45 

Ownership 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Pointer 0.90 0.90 0.90 0.93 0.87 0.90 0.94 0.86 0.90 

Deprecation 0.82 0.78 0.80 0.85 0.78 0.82 0.97 0.71 0.82 

Rational 0.51 0.50 0.50 0.62 0.43 0.51 0.72 0.35 0.47 

Summary 0.90 0.95 0.93 0.91 0.94 0.93 0.92 0.93 0.93 

Usage 0.87 0.93 0.90 0.90 0.92 0.91 0.92 0.89 0.90 

  0.80 0.80 0.80 0.84 0.77 0.80 0.89 0.72 0.78 

           

Average  0.62 0.69 0.64 0.67 0.55 0.60 0.69 0.44 0.50 

 

TABLE  VI Results 
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code comment classification. Their model better distinguished 

between positive and negative comments. Furthermore, we 

also compared our results with another related work [5] that 

employed a binary classifier with the Bert model for code 

comment classification. They achieved an average F1 score of 

0.66. In another study [7], the authors used a Linear Support 

Vector Machine and obtained an F1 score of 0.55.  However, 

it is important to note that their models focused on binary 

classification, categorizing each comment into one of two 

classes. In contrast, our approach used multi-label 

classification, where a comment can simultaneously be 

associated with multiple labels. This different perspective may 

explain the slight decrease in the observed classification 

performance.  

Table VII displays the performance of our proposed model 

compared to the related works. These comparisons indicate 

that the performance of the Bert model in code comment 

classification can vary depending on different factors, 

including the type of classifier that is selected, whether it is 

binary or multi-label, the number of instances within each 

category, and whether the programming language the code is 

written in follows to a particular structure.  Additionally, Bert 

demonstrated competence in comparison to traditional 

machine learning approaches in the context of code comment 

classification. 

 

VI. CONCLUSION 

 In this paper, we successfully implemented a code 

comment classification system using BERT. Unlike prior 

works which investigated binary and multi-class 

classifications, we consider that a single comment can be 

classified into multiple labels. Therefore, we implemented a 

multi-label comment classifier in which a BERT model is 

trained on a labeled dataset of code comments and achieved 

satisfactory results regarding multi-label classification. Our 

model accurately classified code comments into multiple 

categories, which would assist developers in understanding 

and organizing code comments more efficiently. Our findings 

show that the model's results are affected by the underlying 

programming language syntax for comments. In particular, 

languages such as Java in which distinct comment tags such 

as @author, @see, and @code are used have achieved higher 

results compared to other languages.  

 In terms of directions for future research, we can explore 

several aspects to improve our code comment classification 

model. Currently, we have focused on code comments in three 

programming languages. However, extending the model to 

work with code comments written in multiple languages 

would be beneficial. 

 BERT has released various versions with different 

architectures and pre-training methods. Experimenting with 

these different versions may lead to improvements in 

performance and accuracy. We can compare the performance 

of different versions to identify the most suitable one for our 

code comment classification task. 

Overall, by exploring different languages and trying out 

various versions of BERT, we can continue to enhance the 

accuracy and applicability of our code comment classification 

system. 

 

 

Fig  III . Examples of Model Predictions and Expected Categories for Code Comments 

 

TABLE  VII Performance of the Proposed Model Compared to The Related 

Works 

 Average F1-Score Is Multi-labels? 

Liu et al. [5] 0.66 No 

Al-Kaswan et al. [6] 0.74 No 

Amila Indika et al [7] 0.55 No 

Proposed model 0.64 Yes 
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 التسميات باستخدام المحولات المدربة مسبقاً متعددةصنيف التعليقات البرمجية ت

 
 زرعه شبلي، عماد البسام

 المملكة العربية السعودية جدة،كلية الحاسبات وتقنية المعلومات، جامعة الملك عبد العزيز،  الحاسبات،قسم علوم 
 

zshibli0002@stu.kau.edu.sa, ealbassam@kau.edu.sa 

 
تعد التعليقات البرمجية من الأسس في تطوير البرمجيات، ومع التزايد الكبير في عدد الأكواد البرمجية تتجلى أهمية تصنيف التعليقات  .  المستخلص 

لتسميات البرمجية في تسهيل صيانة البرمجيات والتي تساعد المطورين من فهم الأكواد البرمجية بدقة وسهولة.  تقدم هذه الدراسة منهجًا يستخدم ا

و نموذج المحولات المدربة مسبقاً لتصنيف التعليقات البرمجية في ثلاث لغات برمجة: بايثون، فارو، جافا. وقد أظهر النموذج المقترح   المتعددة

ا يعمل النهج المقترح على تبسيط فهم وإدارة التعليقات البرمجية لتعزز كفاءة وإنتاجية تطوير البرمجيات. بالإضافة إلى ذلك،  . كم0.64نسبة تبلغ 

 يمكن توسيع النهج المقترح ليشمل لغات البرمجة الأخرى ويشكل الأساس للأبحاث المستقبلية حول تصنيف التعليقات البرمجية. 
 التعليقات البرمجية، التصنيف، معالجة اللغات الطبيعية، التعلم العميق، هندسة البرمجيات ـــ  المفتاحية ت الكلما
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