JKAU: Comp. IT. Sci., Vol. 11 No. 1, pp: 13— 25 (1444 AH./ 2022 A.D.)
DOI: 10.4197/Comp.11-1.2

CAL20WL.: Direct Translation from CAL to OWL for
Ontology Authoring

Hanan Hassan Al Mutawal , Hanan Elazharyl,2, Amani Tariq Jamal3 and Nada Bajnaid3

College of Computer Science and Engineering
University of Jeddah, Jeddah, Saudi Arabia
2Computers & Systems Department
Electronics Research Institute, Cairo, Egypt
3Computer Science Department, Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia

12£1801276, helazhary}@uj.edu.sa and 3{atjamal, nbajnaid}@ kau.edu.sa

Abstract-- Due to the difficulty of authoring the Web Ontology Language (OWL) by ontology engineers and domain experts with
little or no engineering experience, the first Controlled Arabic Language (CAL) was proposed to ease ontology authoring by Arab
experts. However, the CAL tool is based on Rabbit to OWL Ontology Language (ROO), meaning that CAL ontologies must be translated
to Rabbit before being ultimately translated to OWL, which is a slow and inflexible process. The slowness is due to the intermediate
translation step, and the inflexibility is due to the coupling between CAL and Rabbit, which prevents modifying and/or extending CAL
statements. This research presents the CAL20WL ontology authoring tool that has been designed to support CAL by translating
ontologies from CAL to OWL directly without passing through Rabbit, making it faster and more flexible. We show how to use
CAL20WL to generate a quite complex Umrah ontology using relatively simple CAL statements and also show equivalent complex
OWL statements that would have been written otherwise. A System Usability Scale (SUS) usability test demonstrated that CAL20WL

is also highly usable.

Index Terms—Arabic, CAL, Ontology, OWL, Rabbit, Web Ontology Language

I. INTRODUCTION

The semantic web is an upgraded version of the World Wide
Web, which adds semantics to web documents to facilitate
processing and comprehension by computers. This means that
computers can provide meaningful interpretation in the same
way that humans process data to achieve their goals. It involves
languages specifically designed to achieve certain goals, e.g.,
the Resource Description Framework (RDF), the Extensible
Markup Language (XML), the Resource Description
Framework Schema (RDFS), and the Web Ontology Language
(OWL) [1]. The Semantic Web is based on RDF, which is a set
of World Wide Web Consortium (W3C) specifications
designed as a metadata model. It is used as a general method of
conceptual description of web resources in the form of subject—
predicate—object triples. XML is a powerful method to format,
store, search and share data. The XML language used by RDF
is called RDF/XML. RDFS is a semantic extension of RDF. An
ontology is a collection of knowledge used to describe a specific
domain. OWL is considered the main language of the Semantic
Web used for writing ontologies; it provides semantics to the
data represented using RDF. Nevertheless, it has more powerful
vocabulary and syntax [2].

Because of the complex syntax of such languages, ontology
engineers and domain experts need languages to help them in
writing and validating ontologies that can be translated to OWL.
Therefore, Controlled Natural Languages (CNLs) have been

13

developed. These languages include Controlled Language for
Ontology Editing (CLONE), Attempto Controlled English
(ACE), Sydney OWL Syntax (SOS), and Ordnance Survey
Rabbit, which is accompanied by the Rabbit to OWL Ontology
(ROO) ontology authoring tool [3]. Unfortunately, all these
controlled languages serve only the English language. Although
identifiers, such as conceptual names and relationships, can be
expressed in other natural languages, the keywords are still in
English. As a result, the statements will be composed of two
languages, making reading, and writing harder and slower. In
addition, the error messages are generated in English only,
making them hard to understand by users are not proficient in
English. This called for developing controlled languages
corresponding to various other natural languages.

Specifically, in Arab regions, many domain experts do not
have English language proficiency or may find it more
convenient to express their knowledge in Arabic. This leads to
errors and ambiguities when they attempt to use the existing
controlled English languages. Although they can seek help from
ontology engineers, they will not be able to verify and validate
a resulting ontology because it will be expressed in English. On
the other hand, reading or writing a statement with Arabic
identifiers and English keywords is difficult and slow. This is
because the statements contain words from two different
languages, with inherent differences. For example, Arabic is
written from right to left, whereas the opposite is true about
English. Controlled Arabic Language (CAL) is the first

mailto:1801276,%20helazhary%20%7d@uj.edu.sa

CAL20WL.: Direct Translation from CAL to OWL for Ontology Authoring 14

controlled Arabic language introduced to address this problem
[4]. Nevertheless, it is based on ROO, meaning that ontologies
must be translated to Rabbit before ultimately being translated
to OWL, which is a slow process. Modifying and/or extending
CAL is not possible under this design.

Another issue is that CAL has not been used to develop a
formal world ontology. To address the aforementioned
problems, this paper proposes the CAL20WL tool, which aims
at improving the ontology authoring process using CAL. This
is achieved by direct translation of CAL statements to OWL to
reduce the translation steps employed in CAL tool. This also
implies higher flexibility since CAL can be modified and/or
extended independently. The paper also proves the efficiencies
of CAL and CAL20WL by using CAL20WL to develop a
complex Umrah ontology using relatively simple CAL
statements and showing the equivalent complex OWL
statements that would have been written otherwise.

The organization of the rest of the paper is as follows: Section
Il provides a literature review to prove the importance of
CAL20WL. Sections Il and 1V explain CAL to OWL mapping
and the details of CAL20OWL tool respectively. The developed
Umrah ontology is presented in Section V as a case study.
CAL20OWL is evaluated in Section VI. Finally, Section VII
provides the conclusion and directions for future research.

Il. LITERATURE REVIEW

In this section, a review of a set of CNLs proposed in the
literature is presented. CNLs have been developed for a limited
number of natural languages such as German [5], Spanish [6],
and English [7]. In light of the fact that English is one of the
most widely used language in the world, the most popular
controlled English languages namely, ACE, SOS, CLOnE, and
Rabbit, are discussed. This is of course in addition to the
controlled Arabic language CAL [4] on which CAL20WL is
based. This is in addition to a recently proposed, but not yet
developed, controlled Arabic language.

A. Attempto Controlled English (ACE)

ACE is a controlled English language. It covers a subset of
standard English, but constraints the syntax and semantics that
can be used. A small set of rules describe the possible
constructions and interpretations. It has been under continuous
development at the University of Zurich since 1995 [8]. ACE
has been developed to allow ontology engineers to express
OWL DL (a sublanguage of OWL) in English. It uses the
Attempto Parsing Engine (APE) to translate its statements into
Discourse Representation Structures (DRSs) that rely on a use
a modification of the first-order logic language [9]. ACE allows
writing compound statements such as “Japan is a country, and
Tokyo is a city” [8]. Unfortunately, using variables such as
those in the statement “If X is bigger than Y, then Y is not
bigger than X makes ACE hard for non-experts to understand
[10]. There is a first-order reasoner for Attempto Controlled
English (ACE). It introduces mathematical and functional
extensions. It covers all ACE constructs that have a
representation in first-order logic [11].

B. Sydney OWL Syntax (SOS)

Manchester OWL is a formal language with a slightly easier
syntax than OWL [12]. SOS is another controlled English

language developed based on Manchester OWL. SOS aims at
filling the gap between a formal language that is easy for
machine processing and a seemingly informal language that is
easy for non-specialists to read and write with the help of an
intelligent authoring tool [13]. SOS provides bindings to OWL
1 functional syntax. Each OWL functional syntax statement is
interpreted as a unit and does not reference any other OWL
statement or background knowledge. This facilitates translation
from SOS to OWL functional syntax and vice versa. In SOS, a
compound statement such as “Japan is a country, and Tokyo is
a city” is not allowed and must be represented as two separate
statements [13]. However, SOS allows the use of variables such
as in the statement “If X is bigger than Y, then Y is not bigger
than X”. It also allows nesting of expressions as needed [14].
This makes SOS hard for non-experts like ACE [4].

C. Controlled Language for Ontology Editing (CLONE)

CLOnE is another controlled English language that has been
developed to allow users to design, develop, and manage
information in the semantic web without having to learn
complicated standards such as XML, RDF, or OWL and
without knowledge of typical ontology engineering tools.
Though it is a simplified implementation of natural language
processors, it permits detailed information representation and
allows high accuracy and reliability [15]. The idea behind
CLOnNE is to accept an input statement regardless of the
grammatical agreement. It is designed to either accept a valid
input or generate an error message and reject an invalid one
[15]. CLONnE has gone through continuous improvement
processes and evaluation unlike the standard ontology editor
Protégé. In 2021, Preventis & Petrakis presented CLONE as a
cloud-based ontology to be used by teams in real-time as a
collaborative environment for authoring and editing ontologies.
It was designed as a service-oriented architecture in order to
benefit from the corresponding easy extensibility and
scalability features [16]. Unfortunately, it also allows
compound statements because it allows a theoretically
unlimited number of concepts or instances per sentence [17].
Hence, it is also hard for non-experts to understand.

D. Rabbit

Rabbit is a fourth controlled English language that has been
developed by Ordnance Survey with the goal of assisting
domain experts in authoring ontologies [3]. While an ontology
is written in English-like statements, OWL DL language (a
sublanguage of OWL) features are supported. This allows
efficient communication and cooperation between domain
experts and ontology engineers. It also allows domain experts
to understand a developed ontology and verify it. Additionally,
a tool called ROO has been developed as a plugin of Protégé
for automatic translation from Rabbit to OWL DL [18]. Rabbit
has many features that make it superior to the other English
controlled natural languages in terms of ease and simplicity of
expressing knowledge with greater details for domain experts
with the help of a knowledge engineer. It considers short
statements to be less prone to error and more understandable
[18]. Accordingly, compound statements such as “America is a
country, and Washington is a city” are not allowed in Rabbit.
Furthermore, it prohibits the use of variables to maintain its

15 Hanan Hassan Al Mutawal, Hanan Elazhary, Amani Tariq Jamal, and Nada Bajnaid

understandability. It also allows an ontology to reference
concepts defined in previous Rabbit ontologies [19].

E. Controlled Arabic Language (CAL)

As previously noted, most controlled natural languages are
developed in English [20]. They typically allow expressing
concepts, their instances, and the relationships in other natural
languages such as Arabic, but this does not apply to the
keywords. This results in statements formed of two different
natural languages which are subsequently slow to read and
write [4]. Additionally, error messages are also expressed in
English. To address these issues for the Arabic language, CAL
has been introduced. In CAL, the whole statement is written in
Arabic including the keywords. This also applies to the error
messages. CAL is based on the controlled English language
Rabbit, and it has a similar syntax, which makes translation
between both languages (Rabbit and CAL) easier [4]. Since
Rabbit has been developed with domain experts in mind, this is
also true about CAL. In other words, CAL is intended to allow
Arabic domain experts to easily develop ontologies in Arabic,
possibly aided by ontology engineers without having to learn
complex languages such as OWL. Unfortunately, CAL tool is
based on ROO tool, meaning that ontologies written in CAL
must be translated to Rabbit before being ultimately translated
to OWL, which is a slow and inflexible process.

F. Arabic Controlled Language

Fahal et al. [21] studied the possibility of developing an Arabic
Controlled Language (ACL) using one of two possible
approaches. The first is to rely on an already developed
language, and the second is to start from scratch. They
evaluated both and decided to use the second cleaner approach.
Nevertheless, to the best of our knowledge, this has not been
achieved yet. It’s clear that there is still an urgent need for an
efficient tool for authoring ontologies using a controlled Arabic
Language. Due to the aforementioned advantages of CAL, we
decided to adopt it and improve CAL tool performance through
the development of the CAL20OWL tool discussed in this paper.

I1l. CAL To OWL MAPPING

To build ontologies, users must declare concepts, instance of
concepts, and relationships between them. In this section, CAL
and corresponding Rabbit and OWL statements [22] are
discussed via a set of examples. It is worth noting that OWL 2
DL is employed by Rabbit and CAL, and hence CAL20WL. A
summary is provided in Table 1.

A. Declaration

Domain concepts should be declared as a first step in

developing an ontology.

= Declaring Cupcake (<< < in Arabic) as a concept in
Rabbit and CAL and as a class in OWL

Example in CAL: s¢ie o / s &S S
In Rabbit: Cupcake is a concept.
In OWL.: Declaration (Class (<£ <))

= Declaring has topping (<:Lal 4 in Arabic) as a
relationship in Rabbit and CAL and as a property in OWL

Example in CAL: 48l 4 /s lilal 4

In Rabbit: Has topping is a relationship
In OWL.: Declaration (ObjectProperty (<lll 41))

* The keywords is a in Rabbit and /s in CAL are used
to declare an instance of a concept. In OWL,
ClassAssertion keyword in used.

Example in CAL: 493 A/ 98 Lui
In Rabbit: France is a country
In OWL: ClassAssertion(s L %)

B. Intersection

The keywords or in Rabbit and _/in CAL are used to express
the intersection of objects. In OWL, the subject of the statement
will be one item from the set of union of instances of the
intersecting concepts.

Example in CAL: <55 5l A1) 3 o) A3Y S b clilial al el€ S S
In Rabbit: Every Cupcake has topping Chocolate or
Strawberry or Raspberry.

In OWL.: SubClassOf (<l S ObjectSomeValuesFrom (4
Gl ObjectUnionOf (s Al 8 23Y S 55)))

C. Union

The keywords and in Rabbit and _sin CAL are used to express
the union of objects. In OWL the subject of the statement is an
instance of both concepts.

Example in CAL: (sady i clilial al () saillly &g S S (S
In Rabbit: Every Raspberry Lemon Cupcake has topping
Raspberry and Lemon.

In OWL: SubClassOf (o5l si elS S
ObjectSomeValuesFrom (<uldlal 41 ObjectIntersectionOf (<
Osed)))

TABLE 1
SUMMARY OF CAL To OWL MAPPING
OWL 2 Rabbit CAL
Construct/Expression/ Representation Representation

Axiom
Class Concept pogie
Object/Data Property Relationship e
Class/Object Property Isa Y
Assertion
ObjectlntersectionOf And B
ObjectUnionOf or S
DisjointClasses No Y

ObjectSomeValuesFrom | One or more of e SSI 5l aaly

EquivalentClasses Can only be 1055 O 1 Sy
0588

EquivalentClasses and Is anything that: et sl oA/ 50
ObjectSomeValueFrom Sl
ObjectExactCardinality Exactly # # 2 ayally
ObjectMinCardinality At least # Fase J3Y) e
ObjectMaxCardinality At most # # e SV e
InverseObjectProperties Inverse of oS
ObjectAllValuesFrom Only Lt
ObjectSomeValuesFrom | Every Js
From e

That gl

CAL20WL.: Direct Translation from CAL to OWL for Ontology Authoring 16

D. No

The keywords No in Rabbit and ¥ in CAL point out that
something about a concept and all its instances is not true. OWL
represents those classes are disjoint.

Example in CAL: .phleb clilalal A€ (<Y

In Rabbit: No Cupcake has topping Tomato.

In OWL.: DisjointClasses(<ls —S ObjectSomeValuesFrom (4
izl ablak))

E. One or more of

The keywords one or more of in Rabbit and ¢« S/ s/ 2/ in
CAL are used to represent an object by one or more concepts.
In OWL, existential quantification is used to represent
existential class expressions via ObjectSomeValuesFrom.

Example in CAL: (e ST sf aal g clilal al asl 5 ¢ 53 6lS S (K
O 3 e S (il sla Al

In Rabbit: Every Cupcake Type One has topping one or more
of Strawberry, Candy, Frosting Cream.

In OWL: SubClassOf (aaly g 5 <l <
ObjectSomeValuesFrom (<ulilal 41 ObjectUnionOf (4114
Gl (w3 S)))

F. Only

The keywords only in Rabbit and £éin CAL are used to express
that those objects represented in statement are the only possible
items that can be used. In OWL, universal quantification is used
to represent a universal class expression via the keyword
ObjectAllValuesFrom.

Example in CAL: &S 534l 8 Clilial 41 1asd 31 5) 8 el S S
In Rabbit: Every Strawberry Cupcake only has topping
Strawberry and Frosting Cream.

In OWL: SubClassOf (4l5/_4 << SObjectAllValuesFrom (
libal a1 ObjectUnionOf (Al18 e X)))

G. Every

The keywords Every in Rabbit and <& in CAL are used to
indicate that the concepts and their instances have something
true. In OWL, existential quantification is used to represent an
existential class expression via ObjectSomeValuesFrom.

Example in CAL: ¢S S cililial clilia) 4l €S oS S
In Rabbit: Every Cupcake has topping Cupcake Topping.

In OWL: SubClassOf (<l —<ObjectSomeValuesFrom(«
A< (€ bl clilal)))

H. From

The keywords from in Rabbit and c«in CAL are used to specify
that the object of the statement is related from whom or from
what. In OWL, existential quantification is used to represent an
existential class expression via ObjectSomeValuesFrom.
Example in CAL: (s 4les Aala g 4l Aiaidio &l jprus A€ (S S
Al

In Rabbit: very Low Calories Cupcake has purpose
Protection from Obesity.

In OWL: SubClassOf (Aadaia <l ymu &S S
ObjectSomeValuesFrom(4 5 41 ObjectIntersectionOf (
ObjectSomeValuesFrom(dites))iieudl))

I. is anything that:

The keywords is anything that: in Rabbit and s~ s/ 4/
~s3in CAL are used to add more details for concepts. OWL
uses multi-class expressions to represent this keyword, which
are EquivalentClasses and ObjectSomeValueFrom.

Example in CAL:
DA e sl A/ sp A3V S 5 S ()
S S e g 5 (A 5
AV S pd A S 5 A S o8 il 4l
In Rabbit:
A Chocolate Cupcake is anything that:
is a kind of Cupcake;
has topping Chocolate and Chocolate Cream.
In OWL: EquivalentClasses (43¥ sS & €lS S
ObjectlntersectionOf (ObjectSomeValueFrom (<télal 41
ObjectintersectionOf ((A3Y sSsi 43V 58 5ill day S) LS)))

J. Can only be

The keywords can only be in Rabbit and ¢s<7sS o/ Léé (Sasin
CAL are used to refer to possible specializations of a concept.
OWL expresses this via semantically equivalent classes.
Example in CAL: 553 (585055 o) badd Sy IS (S 4 S K
G883 a5l Adau i 5 e o) 330)

In Rabbit: Every Cupcake Cream can only be Extra
Sweetness or Medium Sweetness or Mild Sweetness.

In OWL.: EquivalentClasses (<LS S 4w S ObjectUnionOf
(30 35Ma Aau sie 3 5Da 4864 5 5Ma)

K. Number constraining keywords

Rabbit and CAL include several keywords for constraining
numbers as follows:

= The keywords exactly # in Rabbit and 1c LualL# in
CAL are used to constrain specific number of objects that
apply. OWL represents those individuals that are
connected to an exact number of instances.

= The keywords at least # in Rabbit and 2= &Y/ L # in
CAL are used to constrain minimum number of objects
that apply. OWL represents those individuals that are
connected to a minimum number of instances.

= The keywords at most # in Rabbit and 2= _iSY/ L= # in
CAL are used to constrain maximum number of objects
that apply. OWL represents those individuals that are
connected to a maximum number of instances.

An example using exactly keyword is shown below. The
other number constraining keywords have similar syntaxes.
Example in CAL: <lilal | sae bayally il al by IS (S S
s s
In Rabbit: Every Plain Cupcake has topping exactly one
Cupcake Topping.

In OWL: SubClassOf (Lw <l S ObjectExactCardinality
(1 4LS S clilal il 4)

L. Inverse

The keyword inverse of in Rabbit and the keyword (e in CAL
are used to express that a relationship is the inverse of another.
In OWL, this involves using an inverse object property.

Example in CAL: « dalall 4k ll (uSe Ayl g 4] 28l

17 Hanan Hassan Al Mutawal, Hanan Elazhary, Amani Tariq Jamal, and Nada Bajnaid

In Rabbit: The relationship has purpose is the inverse of is
purpose of.
In OWL.: InverseObjectProperties (Aiuk s 4l o Lalall dada)

M. That

The keywords That in Rabbit and /s in CAL are used to
provide the object of the statement a description. In OWL,
existential quantification is used to represent an existential class
expression via ObjectSomeValuesFrom.

Example in CAL: L A/l dnad 28] 4 23e e A€ S S
ALyl

In Rabbit: Every Birthday Cupcake has topping Candle that
has purpose Decoration.

In OWL: SubClassOf(S e &S oS
ObjectSomeValuesFrom(4iLal 41 ObjetIntersectionOf (
ObjectSomeValuesFrom(dses) 4) 4k 5 Lel)))

IV. PROPOSED CAL20WL TooL DETAILS

The CAL20WL tool was developed using the Python language.
Python was selected because although it is a powerful
programming tool, it is easy to use, and maintenance and
debugging can be easily handled in it. CAL20OWL tool supports
OWL 2 DL with functional-style syntax. Fig.1l depicts the
CAL20WL tool architecture. As shown in the figure,
CAL20WL works in two phases: In the first phase, an input
CAL statement is analyzed by the parser. In the presence of an
error, a suitable error message expressed in Arabic is output.
This process continues until no more errors are detected. In the
next phase, the correct CAL statement is translated to OWL. It
is an easy-to-use tool, which enables Arabic domain experts to
author ontologies without having to master ontology
engineering. It can be used with the least amount of training and
results in an OWL ontology matching how the domain expert
understands the domain. The following samples discuss
CAL20WL interfaces and error messages.

Arabic Error
Message

CAL\OWL
translator

CAL Parser
—_—

CAL
Statement

The Parser The Translator

ow |
Statement

Figure 1 CAL20WL Tool Architecture

A. CAL20WL Interfaces

A snapshot of the CAL20WL interface is depicted in Fig.2. As
shown in the figure, the main window contains two frames. The
upper frame contains three tabs. The first one (~2\&4ll) is used to
add concepts to the ontology, the second one (<&l is used to
add relationships, and the last one (J«a') is used to add the
statements describing the ontology. The lower frame contains

two tabs. The first one (ilw <3 Jea) shows all the ontology
statements related to a specific concept in CAL and the other
tab (OWL) shows the ontology in OWL. The button 3l il
Ll at the bottom is used to delete the ontology and restart.

To add a new concept, press the tab ~aladll then press the
button wa a sede 48La) (add a new concept). As shown in Fig.3.,
two frames are displayed, the first one is for typing the new
concept and the other for showing error messages as needed.
Adding relationships, and other statements is accomplished via
similar steps. Instances of concepts are added form the
statements tab (V) based on “4/4” keyword. In the main
window, the concepts tab (~»'4<!') will show all the concepts that
were added to the tool. As shown in Fig.4., next to each concept,
there are three buttons: aseill &y (search for concept) for
showing all statements related to the concept, OWL for showing
how the concept is added to the ontology in OWL language, and
aseiall a3 (delete concept) for deleting the concept from the
ontology. The same applies to the tabs <&l (relationships)
and Jeall (statements).

The added concepts, relationships, instances, or statements
can be deleted via the <3~ (delete) button. The tool converts the
input CAL statements into OWL language. To show an OWL
statement corresponding to a CAL statement, press the button
OWL, and to show all the OWL statements, press the OWL tab
in the lower frame in the main windows.

B. Error Messages

In this section, a sample of the error messages that may be
generated to the user in Arabic is presented.

* The message “lasws 25x 5« which means (already exists)
will appear when the same concept or relationship is re-
entered to the tool. It is depicted in Fig.5.

* The message “3s>5 x () psedal” (the concept does not
exist) will appear when the concept in an input statement is
not declared as a concept in the tool. Considering the
example “Ul B 5 & g5 Slila) A S < < (Bvery Cupcake
has topping Strawberry and Raspberry) and assuming it is
input without first introducing “<s (Raspberry) as a
concept to the tool, the message “2sn3a n& (Ls) asedall”
(“the concept does not exist”) will appear.

* The message “335> 5« & () 48311 (the relationship does not
exist) will appear when the relationship in an input
statement is not declared as a relationship in the tool.
Considering the same example « 5 <55 i) 4l &l < S
454 (Every Cupcake has topping Strawberry and
Raspberry) and assuming it is input without first
introducing “<ilal 4 (has topping) as a relationship to the
tool, the message ‘“Gasnse e (Clilal 4l) 48 (the
relationship does not exist) will appear.

V. CASE STUDY: UMRAH ONTOLOGY

In this section, a case study using the CAL20WL tool to build
an Umrah ontology is presented. The goal is to prove that we
can develop a quite complex ontology using simple CAL
statements and meanwhile, show the complexity of the
equivalent OWL statements that would have been used instead.

CAL20WL.: Direct Translation from CAL to OWL for Ontology Authoring

Fig. 6 depicts the Umrah ontology diagram. The figure shows
all the concepts and instances of concepts of the ontology and
the relationships between them. The concepts are inserted in
circles, the instances are inserted in squares and the
relationships are shown using arrows.

Tables 2 and 3 shows a set of CAL statements comprising the
Umrah ontology and the corresponding OWL statements.
Tables 4, 5 and 6 show the whole Umrah ontology generated by
CAL20WL tool. It is worth noting that it is expressed in
OWL2 Functional Style syntax. To generate the ontology, it
was first authored using CAL language in a text file, and the file
was saved by pressing the button save (i) in the OWL tab in
the main window. The time taken to generate the OWL
ontology using the CAL20OWL tool is lower than that needed to
generate it using the CAL tool. The estimated time reduction
was about 45%. This is attributed to the fact that in CAL20WL
the step of translating CAL statements to Rabbit before
ultimately translating them to OWL is totally eliminated.

B ' CAL to OWL == >
Lo=xJl ALV ES || pedlaocdl
2w pgpaoc aslol
OowL albo <ls Jo=
L
[pgpeo aslol I

Figure 3 Add New Concept

18

19 Hanan Hassan Al Mutawal, Hanan Elazhary, Amani Tarig Jamal, and Nada Bajnaid

@7 CAL to OWL — P

Jozdl e]| paolaocl

) pggiall Lol OWL ooptall Sumy| Mol
eggaall b1 OWL poghall Cisy| O
popioll Lol OWL oogiall Sy Vo]
pogaall Laix OWL pogiall fimy| VeSoab
v

2y pgpao adlal

OWL alo ols lo>

Sl sacld Wi

Figure 4 Concepts List

Pypan aslsl

dalgl b

lﬂ aorabdy BQTTLO

Figure 5 Error Message (already exist)

CAL20WL.: Direct Translation from CAL to OWL for Ontology Authoring

PRTT

P

Gl
A
L5l

il

EREI 1
>

ol G gl

51)‘:‘ '\-ij'l . " e

:_“ e //
"’;""Vl; "
3
‘i')
o
g
9
|

1,
5
3173 2l7|1 2
2 lall] 2] EAEIENE !
A ETE R E A R R
HHERRMHEE

TABLE 2

20

Figure 6 Umrah Ontology Diagram

21 Hanan Hassan Al Mutawal, Hanan Elazhary, Amani Tariq Jamal, and Nada Bajnaid

UMRAH ONTOLOGY STATEMENTS IN CAL AND OWL (1 oF 2)

CAL statements

OWL statements

BJA:J\O\SJ\O\SJ‘L@JE‘)ALJS

SubClassOf (5=
ObjectSomeValuesFrom(!
3 el JS1 (IS 51))

TABLE 3
UMRAH ONTOLOGY STATEMENTS IN CAL AND OWL (2 oF 2)

CAL statements

OWL statements

8 yaall lag i Ja g 5 Led 3 yee S

SubClassOf (3
ObjectSomeValuesFrom(!
8 enll ks yd Ly 5d))

ol G il Algs 4l Gl O

2 !

SubClassOf (<l sk
ObjectSomeValuesFrom(«
4« ObjectIntersectionOf (
ObjectSomeValuesFrom(— sk)
(25Y) _aall)))

5 pardl laad g Cilial 5 L 3 jue S

SubClassOf (5=
ObjectSomeValuesFrom(!
5 aall Gl 5 cilial)

O al AV Clal 5 Ll 5 jae JS
Cilad)

SubClassOf (3_«=
ObjectSomeValuesFrom (L
<lal s ObjectintersectionOf (
ObjectSomeValuesFrom(al Y1)
(Sai)))

B}ﬂ\)M\O&dwds

SubClassOf (sz
ObjectSomeValuesFrom(4
J«ObjectintersectionOf
(sl 55540)))

o o AT Al s pee
Olad)

SubClassOf (3=
ObjectSomeValuesFrom(4 !
ObjectintersectionOf (
ObjectSomeValuesFrom(al_=Y)
(&)

M\wwlﬁ‘hﬂwd&

SubClassOf (-
ObjectSomeValuesFrom(&a 41
ObjectintersectionOf (
ObjectSomeValuesFrom(=)
()]

53l G o ilgh Al o

SubClassOf (s
ObjectSomeValuesFrom(41
4l¢0bjectIntersectionOf (
ObjectSomeValuesFrom(=)
(504)))

Aloall aaid) s e Al Gl gla S

SubClassOf (<l sk
ObjectSomeValuesFrom(
aoall asiiall aia (1S4))

e\)&Y‘ 22 Glafiea g ?\‘)33”

o il 3 Led 3 e JS | SUbClassOf (3_e
&l aYl | ObjectSomeValuesFrom(&
4l&ObjectIntersectionOf (
ObjectSomeValuesFrom(Jixll)
(#=Y))
Gy shae il shhaaadl #a¥1 | SubClassOf (oY)
el aYl a | ObjectSomeValuesFrom(4
AAY) any il shae) shaas)
Ji Glatiue Glatue 4l ol a1 | SubClassOf ((alaY)

ObjectSomeValuesFrom(«
ClaissObjectintersectionOf
(2 claiue ol aY) Jd Slatie
P Y1)

Jal Ul (e Clige Ak 5 4 dgglall 13
55 siall Aiagl)

SubClassOf(4alall 13
ObjectSomeValuesFrom(
Ak
ObjectIntersectionOf(ObjectSo
meValuesFrom(<liw) Jal
(EERE))

Tadall 13) 55 o) aih (S el
S alely o 3l o) 8 5l Aiasll)
S 5l (e il

EquivalentClasses (<lixll
ObjectUnionOf(dadsll 1
Gue b ALy Jolall g8 ddsal)
)

AT Ul G s Zagh 5 4l G
dal g lasadl dal 5 pae Jal g aLal
el sl

SubClassOf(aiaall
ObjectSomeValuesFrom(
)
ObjectIntersectionOf(ObjectSo
meValuesFrom(<liw) oLl Jal
Gl ol lasall Jal jeae dal
(o)

7 2c Janally dae Al Cal gl (S
Ll g

SubClassOf (<l sk
ObjectExactCardinality (7
2 4l bl sal))

7 2 hapally ase 4l g IS
Ll g

SubClassOf (|
ObjectExactCardinality (7
Ll gaf aae 4l))

dal e e ddl gl J el ¢y 8
@ il dsa 5 aai dal

SubClassOf(Jtall ¢
ObjectSomeValuesFrom(
Aa
ObjectIntersectionOf(ObjectSo
meValuesFrom(<:liw)

(2 dal) Al)

oaall e il sha Aoy 4l Cal gla S

2 guY)

SubClassOf (<l sk
ObjectSomeValuesFrom(&l
ObjectlIntersectionOf (
ObjectSomeValuesFrom(— sk)
(25aY) yaall)))

Gl 081 O e e T 5 41 L
iSa gin daly

SubClassOf(aleks
ObjectSomeValuesFrom(
Ak
ObjectIntersectionOf(ObjectSo
meValuesFrom(<ilisw) cadl Jal
(38 i Jal)))

Jal) o lise Al 5 4 (e I3
Byl

SubClassOf(&e il

ObjectSomeValuesFrom(«!
Al
ObjectIntersectionOf(ObjectSo

CAL20WL.: Direct Translation from CAL to OWL for Ontology Authoring 22

meValuesFrom(<iliw) Jal
(&)

TABLE4
UMRAH ONTOLOGY GENERATED BY CAL20WL TooL (1 oF 3)

/[Class declaration
Declaration(Class(=-«l))
Declaration(Class(pl_adl 2wl (aua))
Declaration(Class(ss_))
Declaration(Class(e<ll))
Declaration(Class(s <=l (/<))
Declaration(Class(s_esll L 5 5&))
Declaration(Class(s_ell <ibal 5))
Declaration(Class(s)_aY! J8 ciliatiun))
Declaration(Class(pl s s &) slass))
Declaration(Class(4ss))
Declaration(Class(<uxll Jal))
Declaration(Class(Ll Jal))
Declaration(Class(4%« Jal))
Declaration(Class(csh s« Jal))
Declaration(Class(_=< Jal))
Declaration(Class (&' Jal))
Declaration(Class(zal J52))
Declaration(Class(cd! Jal))
Declaration(Class(xx3 Jal))
Declaration(Class(.al) <l Jal))
Declaration(Class(+Se < sia Jal))
Declaration(Class(2s=¥! saall))
Declaration(Class(! s1))
Declaration(Class(Ji~ill))
Declaration(Class(pl sa¥! 2 cliatii)
//Object property:
Declaration(ObjectProperty(L shas 41))
Declaration(ObjectProperty (<laiue 41))
Declaration(ObjectProperty(2a 4l))
Declaration(ObjectProperty (4ie &)
Declaration(ObjectProperty(<bal s L))
Declaration(ObjectProperty(csS_ &)
Declaration(ObjectProperty(<)) shas 4l))
Declaration(ObjectProperty (oS« 41))
Declaration(ObjectProperty(3ulx 41))
Declaration(ObjectProperty(2s_»& l))
Declaration(ObjectProperty(3ie 1))
Declaration(ObjectProperty(d&da 5 1))
Declaration(ObjectProperty (oS L))
Declaration(ObjectProperty (&) L))

Declaration(Class(6<=))

SubClassOf (s_«=ObjectSomeValuesFrom <ilaly L)

(5 0nd) il 5)

SubClassOf (5_<=ObjectSomeValuesFrom (S

5 el S))))

SubClassOf (s_«=ObjectSomeValuesFrom (& &
ObjectintersectionOf(ObjectSomeValuesFrom(Rabbit:f
rom diaill)(el=¥1)))

SubClassOf (s_«=ObjectSomeValuesFrom(L s !

5 anll Lo g)

SubClassOf (s_<«=ObjectSomeValuesFrom (<lals
ObjectintersectionOf(ObjectSomeValuesFrom(Rabbit:f
rom ¢la¥l) (S)))

TABLES
UMRAH ONTOLOGY GENERATED BY CAL20WL TooL (2 oF 3)

Declaration(Class(«—\ax))

EquivalentClasses (<&« ObjectUnionOf(désall
dalall 1

Boe Gl

okl o 8

i

L))

Declaration(Class(=~))

SubClassOf (= ObjectSomeValuesFrom S« 4l)
(crasell)

SubClassOf (=~ ObjectExactCardinality(7 22 4
Ll 5il))

SubClassOf (=~ ObjectSomeValuesFrom (&g 41
ObjectintersectionOf(
ObjectSomeValuesFrom(Rabbit:from ==)(s5.411)))
SubClassOf s==)ObjectSomeValuesFrom (4l 4
ObjectIntersectionOf(
ObjectSomeValuesFrom(Rabbit:from =)(le<all)))

Declaration(Class(<! sk))

SubClass (<'sk ObjectExactCardinality(7 2 4
Ll 5al))

SubClassOf (<l sk ObjectSomeValuesFrom(«
4\« ObjectlIntersectionOf (
ObjectSomeValuesFrom(Rabbit:from<sl sk)(saall
35-31)

SubClassOf (<l sk ObjectSomeValuesFrom(«
4)uObjectIntersectionOf (
ObjectSomeValuesFrom(Rabbit:from<al sha)(_jaall
2531)))

SubClassOf (<l sk ObjectSomeValuesFrom (lSa 4l)
(p1oal) 2nsdll paia)

Declaration(Class(sl ~Y1))

SubClassOf (s/_~Y) ObjectSomeValuesFrom)
SubClassOf (#/~Y) ObjectSomeValuesFrom bt 4
(ObjectintersectionOf (alya¥) Jd Cliatin 22y Sl
RERD)

ClassAssertion (< Al

SubClassOf(akk ObjectSomeValuesFrom (&k g 41
ObjectlIntersectionOf(ObjectSomeValuesFrom(<w)(
310 1))

ClassAssertion(2liw 45a)

SubClassOf («<« ObjectSomeValuesFrom(&k s 41
ObjectintersectionOf(ObjectSomeValuesFrom(<law
)(4Ss Jal)))

ClassAssertion(<liw dglall 13)

SubClassOf (Zalall 13 ObjectSomeValuesFrom(&éda s 41
ObjectintersectionOf(ObjectSomeValuesFrom(<
)(aall da)))

23 Hanan Hassan Al Mutawal, Hanan Elazhary, Amani Tariq Jamal, and Nada Bajnaid

ClassAssertion(<lis e <)
SubClassOf(&= <12 ObjectSomeValuesFrom(4ak s 4
ObjectlIntersectionOf(ObjectSomeValuesFrom(<liw)
(I Y)))
TABLEG
Umrah Ontology Generated by CAL20OWL Tool (3 of 3)

ClassAssertion(<ix dsaall)

SubClassOf(2isall ObjectSomeValuesFrom(ik 5 41
ObjectlIntersectionOf(ObjectSomeValuesFrom i) Jal
ond ol dal ((glasadl Jal as Jal LiNYY)
ClassAssertion(<ts J bl o 3)

SubClassOf(Juall ;58 ObjectSomeValuesFrom(4k s 41
ObjectlIntersectionOf(ObjectSomeValuesFrom(<tiw)(
a3 ol 2l wlal Js)))

ClassAssertion(s_aall by i delkinyl)
ClassAssertion(s exll s yi 4, all)
ClassAssertion(s_exll Ja g i 2Y)
ClassAssertion(s_aall Ly Jiall)
ClassAssertion(s_esll by i & shll)
ClassAssertion(pl a¥) J8 cilbaiue gl & culaill)
ClassAssertion(plua¥! Jd clbaiue jiULY) o)
ClassAssertion(plya¥! J8 claiue adlall jad 3la)
ClassAssertion(al_a¥) J8 dlatue Jluseyl)
ClassAssertion(al_aY! s Gliaiuae 4ulil)
ClassAssertion(ala¥) s <l) gaaa [iUaY) aulii)
ClassAssertion(sl aY) s &l shaas alll 8 Culaill)

(

(

(

(

(

(

(

(

(

(

(

ClassAssertion(al_a¥! s <l) shasa 522l 411 31)
ClassAssertion(ploa¥) s <l jshas glaall)
ClassAssertion(al_aY! s <l jshas #1530 2ie)
ClassAssertion(al_a¥) 2 &l shaas (gl auall J36)
ClassAssertion(pl aY) s <l) shaaa 3 jall Sl)
ClassAssertion(al_aY) s &l) shase Ja Gl 1 ddass)
ClassAssertion(pla¥) s <l) shaaa 5 jall lal))
ClassAssertion(s sl Clialy ol (el) j2d i)
ClassAssertion(s sl clials daLll Gl jad 3ls)
ClassAssertion(s yea)) claal s 31 yall Gul JIl jedi juai)

-
o
-
o
A
-
.
ClassAssertion(pl_aY) e &l) shas Ja)l il)
¢
¢
¢
¢
¢
¢
¢

V1. EVALUATION & DISCUSSION

To evaluate the proposed tool, the System Usability Scale
(SUS) Questionnaire [23, 24] is employed. This questionnaire
has proven itself in several usability tests over the years. The
questionnaire is used because the questions were appropriate
for evaluating the tool. Table 7 shows the items on the
questionnaire. On a Likert scale [25], the participants gave
answers to the questions ranging from one (strongly disagree)
to five (strongly agree). The table provides the mode of each
question response, which is 1 for the odd questions (ideal) and
5 for the even ones (ideal) indicating very high usability.
Assuming the scores are equidistant, the table also provides the
mean of each question response.

Computing the SUS score per respondent involves reducing
the score of each odd questionnaire item by 1 to obtain a number
in the interval [0, 4]. Adding the five adjusted scores results in
the odd SUS score, SUS, as shown in the following equation:

SUS, = Z?:l,i 0ad(Si — 1) (1)

This is followed by subtracting the score of each even
questionnaire item from 5. Adding the five adjusted scores
results in the even SUS score, SUSe as follows:

SUSe =]1'22,j even(s - Sj) (2)

Finally, the respondent SUS score, ranging from 0 to 100, is
computed as follows:

SUS = (SUS, + SUS,) x 2.5 ©)

The computed scores ranged from 80 to 100 with an average
of 90.25 indicating that the tool is highly usable.

TABLE7
RESULTS OF THE USABILITY QUESTIONNAIRE
Indicator of evaluation Mode Mean
1 | Ibelieve that I would like to employ this 5 44
tool regularly
2 | | found the tool pointlessly complicated 1 1.1
3 | I believe the tool is pretty easy to use 5 4.8
4 | I believe I will seek technical support to 1 1.3
be able to use this tool
5 | | believe the different functions in this 5 4.7
tool are really well integrated
6 | I believe there are many inconsistencies 1 15
in the tool
7 | | believe that most users can learn how 5 4.7
to use the tool pretty fast
8 | | found using the tool very unwieldy 1 1.3
9 | | felt very self-confident using the tool 5 4.8
10 | I had to learn many things before using 1 2.1
the tool | could start using this tool

The results of the usability test were expected due to the
obvious simplicity of CAL statements in comparison to OWL.
In addition to the usability test, the generated Umrah ontology
has been validated by a domain expert. Nevertheless, the main
benefit of CAL20WL is the speedup gained due to eliminating
the step of translating CAL statements to Rabbit before
ultimately translating them to OWL. This is in addition to the
flexibility gained by decoupling CAL from Rabbit allowing
modifying and/or extending CAL independently as needed.

VII. CONCLUSION AND FUTURE WORK

This paper presented the CAL20WL tool for authoring Arabic
ontologies by direct translation from the controlled Arabic
language CAL to OWL. It serves Arabic domain experts who
prefer to author their ontologies in Arabic. Error messages are
also generated in Arabic to facilitate the experts’ understanding.
CAL20WL is an improvement of the CAL tool in which CAL
statements were translation first to the controlled English
language Rabbit and then to OWL. Due to eliminating this step,
time needed to generate a given ontology is greatly reduced.
Additionally, this decoupling of CAL and Rabbit allows us to
add/modify CAL statements independently. To the best of our
knowledge, this is the first and, at the time of this study, the
only tool developed for this purpose and with these capabilities.

CAL20WL.: Direct Translation from CAL to OWL for Ontology Authoring 24

A case study was presented to show how we could efficiently
use simple CAL statements to develop a quite complex Umrah
ontology, and to show the complexity of the corresponding
OWL statements that would have been written instead. We also
conducted a SUS usability test, which depicted that the tool is
highly usable. This is in addition to validating the resulting
ontology with the help of a domain expert.

As future work, we intend to study the possibility of
expanding CAL20WL with additional statements independent
of Rabbit, given that they have been now decoupled. The goal
is to provide a fully functioning tool to promote the
development of ontologies in Arabic as needed. Developing
more complex ontologies will be also attempted. This is in
addition to formal verification and validation of the tool.

[1]
(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

Harth, A., Janik, M. & Staab, S. (2011). Semantic web
architecture. In Handbook of Semantic Web Technologies.
Antoniou, G. & Van Harmelen, F. (2004). Web ontology
language: OWL. In Handbook on Ontologies (pp. 67-92).
Springer, Berlin, Heidelberg.

Hart, G., Johnson, M., & Dolbear, C. (2008). Rabbit:
Developing a control natural language for authoring
ontologies. In European Semantic Web Conference (pp.
348-360). Springer, Berlin, Heidelberg.

Elazhary, H. (2016). CAL: A controlled Arabic language
for authoring ontologies. Arabian Journal for Science and
Engineering, 41(8), 2911-2926.

Schwitter, R. (2005). A controlled natural language layer
for the semantic web. In Australasian Joint Conference
on Artificial Intelligence (pp. 425-434). Springer, Berlin,

Heidelberg.
Calderon, S. (2015). Building a Controlled Natural
Language Framework for Real-time Machine

Translation. Revista de Lenguas Modernas, (23).

Fuchs, N., Kaljurand, K. & Kuhn, T. (2008). Attempto
controlled English for knowledge representation. In
Reasoning Web (pp. 104-124). Springer, Berlin,
Heidelberg.

Schwitter, R. (2010). Controlled natural languages for
knowledge representation. In Coling 2010: Posters (pp.
1113-1121).

Fuchs, N. & Kaljurand, K. (2006). Attempto Controlled

English meets the challenges of knowledge
representation, reasoning, interoperability and user
interfaces.

Fuchs, N. E., Kaljurand, K., & Kuhn, T. (2008). Attempto
Controlled English for knowledge representation.
In Reasoning web (pp. 104-124). Springer, Berlin,
Heidelberg.

Fuchs, N. (2021). Reasoning in Attempto Controlled
English: Mathematical and functional extensions. In
Proceedings of the Seventh International Workshop on
Controlled Natural Language (CNL 2020/21).
Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C. &
Hart, G. (2008). A comparison of three controlled natural
languages for OWL 1.1.

Cregan, A., Schwitter, R., & Meyer, T. (2007). Sydney
OWL Syntax-towards a Controlled Natural Language
Syntax for OWL 1.1. In OWLED (Vol. 258).

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Davis, B. P. (2013). On applying controlled natural
languages for ontology authoring and semantic
annotation (Doctoral dissertation).

Tablan, V., Polajnar, T., Cunningham, H., & Bontcheva,
K. (2006). User-friendly ontology authoring using a
controlled language. In Proceedings of the Fifth
International Conference on Language Resources and
Evaluation (LREC’06).

Preventis, A., & Petrakis, E. G. (2021). CLONE:
Collaborative Ontology Editor as a Service in the
Cloud. Procedia Computer Science, 184, 275-282.
Davis, B., Igbal, A. A., Funk, A, Tablan, V., Bontcheva,
K., Cunningham, H., & Handschuh, S. (2008). Roundtrip
ontology authoring. In International Semantic Web
Conference (pp. 50-65). Springer, Berlin, Heidelberg.
Engelbrecht, P., Hart, G., & Dolbear, C. (2009). Talking
rabbit: a wuser evaluation of sentence production.
In International Workshop on Controlled Natural
Language (pp. 56-64). Springer, Berlin, Heidelberg.
Denaux, R., Holt, I., Dimitrova, V., Dolbear, C., & Cohn,
A. G. (2008). Supporting the construction of conceptual
ontologies with the ROO tool. In 4th OWL Experiences
and Directions Workshop (OWLED 2008 DC),
Washington (pp. 1-2).

Kuhn, T. (2014). A survey and classification of controlled
natural languages. Computational Linguistics, 40(1), 121-
170.

El Fahal, H. S., Nasri, M., Bouzoubaa, K., & Kabbaj, A.
(2019). Roadmap for an Arabic Controlled
Language. International ~ Journal of Information

Technology and Language Studies, 3(3).

McGuinness, D. L., & Van Harmelen, F. (2004). OWL
web ontology language overview. W3C
recommendation, 10(10), 2004.

Brooke, J. (1996). SUS: A quick and dirty Usability Scale.
Usability Evaluation in Industry, 189(3).J.

Brooke, J. (2013). SUS: A retrospective. Journal of
Usability Studies, 8(2), 29-40.

Dharmarajan, B., & Gangadharan, K. (2013). Applying
technology acceptance (TAM) model to determine the
acceptance of nursing information system (NIS) for
computer generated nursing care plan among nurses. Int J
Comput Trends Technol, 4(8), 2625-2629.

25

Hanan Hassan Al Mutawal, Hanan Elazhary, Amani Tariq Jamal, and Nada Bajnaid

L o1 sl LUSI OWL A CAL 4xd (e sl dysaill slal :CAL20WL

Saiay i Sdlaa Alal (125 a W Glia dg ghaa J Guas Gl
! Leaiglly Calal o sl S
L0 geud) 4o pall ASLaal) 652n ¢52n drals
Labai¥l g gurlall 5 jeaf
P2 :EJA&// ‘ul;uj‘).&/}//uja_: e
3 e pleal) i g il al] S ssnslal) o sle and
L0 gl s yadl ASLaall can ¢ o jall e llal) drola

ped) Jlaall e i 5 Lin o) gl swviga U8 Cn (OWL) sl Aaly Lin o glai¥) A & gaal | s | paalilwalf
el ol Al Ji e LS Jigasl (CAL) Lin s) bt AUST A e 4 sl) 581 o e sana 5l AL davin 3 54
A5) e L sl shai¥) den 5 omg 4l iny Las < Ralbbit to OWL Ontology (ROO) 4a!) aiius (CAL) 3l
() 803l Jagaill 6 glad oy A e g AidayAdes a5 ¢ (OWL)) Weien i Ji (Rabbit) 431 Y (CAL)
Aty (CAL) @ljbe aausi 5/ 5 Jsaad giay Las (RaDDIL) 5 (CAL) s O O 5BY) Ganeny 435 5all pae) g0 58
On Laslshail) des i A e (CAL) ped leasanai o3 (Al (CAL20WL) Lin sl shai¥) LS 3131 Gandl 128
S A8 gl eda (b (ym yai A5 e SiSH 5 g pul Ledens Laa ¢ (Rabbit) e s el 0523580 (OWL) S (CAL)
sl (myai s Gansd Ay (CAL) ke alasinly Ll daaa 3 0 L sl shail olid (CAL20WL) 31 alasial
LB e jlas) selal a8y 5 Al A8l Wil Sl (e (IS) 23S 338l (OWL))l 485l o2 b

S S Al AL Ll 31aY1 e aiplal 23 A(SUS) alail alasiiu

