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Abstract—Dysarthria is a neuromotor speech disorder that results from physical disability and limits speech intelligibility. Dysarthric 

speakers can make use of speech recognition systems to help them communicate more effectively with others. This paper surveys the 

latest works conducted on dysarthric speech recognition that was carried out in a span of five years, specifically from 2018 until 2023. 

These works are categorized according to the approach that was followed to improve dysarthric speech recognition. The approaches 

include data augmentation, enhancement of dysarthric speech, speech and acoustic features, adaptation, and hybridization of multiple 

approaches.    
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I. INTRODUCTION 

 Dysarthria is “a set of motor disorders resulting 

from general physical disabilities that limit speech 

intelligibility” [1]. Dysarthric speakers may also 

suffer from physical disabilities that might hinder 

them from communication through typing or using 

electronic devices and computers and hence, speech 

would be considered more convenient to them [2]. 

Therefore, a speech recognition system would be 

beneficial for them as it can take their speech as an 

input and convert it into text that can be used to 

communicate with others or with assistive 

technology. 

Reviewing the literature shows that only a 

limited number of studies surveyed dysarthric speech 

recognition and discussed the efforts in this field. A 

study that aimed to review dysarthric speech 

recognition traced its development from 1990 to 2022 

highlighting works conducted before and during deep 

learning era [3]. The authors summarized the 

development of ASR for dysarthric speech according 

to four aspects: acoustic models, acoustic features, 

language-lexical models, and End-to-End ASR. 

Other studies reviewed dysarthric speech recognition 

through comparing machine learning with deep 

learning techniques [4] or from a clinical perspective 

[5]. The significance of the present work stems from 

its focus on the recent advances in dysarthric speech 

recognition as it covers the works conducted recently 

in a span of five years, specifically from 2018 until 

2023. In addition, it provides a comprehensive 

overview of dysarthric speech recognition research 

with a focus on the approach used to improve the 

recognition accuracy rather than the model used. 

Approaches mainly include data augmentation, 

enhancement of dysarthric speech, speech and 

acoustic features improvement, adaptation to 

dysarthric speakers or speech, and a hybrid of these 

approaches. Consequently, this paper aims to 

complement existing literature by providing a recent 

overview of different approaches that can be utilized 

to enhance dysarthric speech recognition along with 

the techniques used, word error rates achieved and the 

available datasets. This in turn can reflect on future 

research and help researchers achieve better results 

using this holistic view. 

II. APPROACHES TO DYSARTHRIC SPEECH 

RECOGNITION 

A. Data Augmentation 

Data augmentation is a process used to artificially 
generate additional training data to support automatic 
speech recognition [6] [7]. This could be 
accomplished through many strategies such as time 
warping, time masking, frequency masking, 
synthesizing dysarthric speech or using multiple 
databases [7] [8] [9] [10]. The rationale behind this 
approach is to support the scarcity of dysarthric 
speech datasets that are used for training as it is 
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difficult to collect large datasets from dysarthric 
speakers because they struggle to produce speech due 
to their health conditions. 

Synthesis of dysarthric speech has been employed 
in several works to augment data. Vachhani et. al. 
explored the effect of data augmentation on 
dysarthric ASR [6]. The authors produced synthetic 
dysarthric speech through performing temporal and 
speed modifications on normal speech. They also 
used a Random Forest Classifier (RFC) that was 
trained on actual dysarthric speech to classify 
synthetically generated dysarthric speech according 
to severity levels. After that, a DNN-HMM based 
ASR system was trained using normal speech and 
augmented dysarthric speech and then evaluated 
using UASpeech corpus. The results showed that 
tempo-based and speed-based data augmentation led 
to an absolute improvement of 4.24% and 2% 
respectively when compared to an ASR system 
trained only on normal speech. 

Takashima et al. proposed an end-to-end ASR 
framework that is trained using multiple multilingual 
datasets instead of focusing only on one to augment 
data and overcome the scarcity of dysarthric speech 
data [9]. The first dataset contained speech data of 
Japanese persons with an articulation disorder 
resulting from athetoid cerebral palsy. The second 
contained speech data of non-Japanese persons with 
an articulation disorder. The third contained speech 
data of a physically unimpaired Japanese person. The 
main reason for using multiple datasets is that 
impaired speech data is limited and not easy to collect 
because of its large burden on users due to the strain 
put on the speech muscles. In addition, training the 
model on dysarthric speech from multiple languages 
can boost the training model and capture a better 
high-level representation. The framework consisted 
of two models: an acoustic model for dysarthric 
speech and a Language Model (LM) for each 
language regardless of dysarthria. The model was 
based on Listen, Attend, and Spell (LAS) with two 
listeners and two spellers. One listener is for 
dysarthric speech, and the other is for unimpaired 
speech. The spellers are one for Japanese and one for 
English where each one will get data according to 
language regardless of impairments. The results 
showed that the proposed model is promising and 
achieved a better character error rate (CER) when 

compared to the same model trained only on 
unimpaired speech or using impaired speech of one 
language. 

Xiong et. al. studied speech tempo analysis at the 
phonetic level to reduce the mismatch between 
typical and atypical speech [11]. The authors non-
linearly modified speech tempo and performed 
speech tempo analysis at the phonetic level using a 
forced alignment process from the traditional GMM-
HMM ASR system. They considered two 
approaches. The first was to modify dysarthric speech 
into normal speech and use it as an input to an ASR 
system trained on normal speech. The second was to 
modify normal speech into dysarthric speech to 
augment data in personalized dysarthric ASR 
training. The authors found that the second approach 
was more effective and resulted in an absolute 
improvement of 7% in comparison to baseline 
speaker-dependent trained systems that are evaluated 
using UASpeech corpus especially for moderate to 
severe dysarthric speakers. 

Misbullah et. al. employed time delay deep neural 
networks for dysarthric ASR and investigated its 
performance for this task [10]. The collected data 
included English and Mandarin dysarthric speech. 
The authors performed data augmentation to increase 
the dataset available to support the training process 
through changing audio speed to produce different 
data. In addition, they used the time-warp and Voice 
Track Length Normalization (VTLN) warp with 
different warping factors after performing speed 
augmentation. Moreover, they combined the English 
dysarthric training corpus they collected with normal 
speech from Common Voice dataset to increase the 
English training data as it was not enough for 
training. The results showed that well-tuned 
hyperparameters gave promising results and could 
lead to a stable network structure for English and 
Mandarin dysarthric speech. Also, data combination 
with normal speech and well-tuned hyperparameters 
could significantly improve the performance of ASR 
systems for dysarthric speakers. 

Mariya Celin et. al. performed a two-level data 
augmentation through the employment of Virtual 
Microphone array synthesis (VM) that is followed by 
Multi-Resolution Feature Extraction (MRFE) in 
order to increase the training data [12]. In the first 
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step, the authors synthesized six virtual microphone 
array signals from the first microphone signal that 
was recorded using UASpeech corpus. This was 
attained through altering the phase parameter. In the 
second step, the authors used different window sizes 
to artificially produce multiple examples for a given 
utterance. This is because the features that are 
extracted from a single speech signal with different 
window sizes have different frequency resolutions. 
After that, and with the use of augmented speech data, 
the authors trained an isolated word hybrid DNN-
HMM based ASR system using UASpeech corpus 
along with Tamil speech corpus which they have 
developed. The results showed a reduction in Word 
Error Rate (WER) up to 32.79% for low intelligible 
dysarthric speakers and up to 35.75% for very low 
intelligible dysarthric speakers.  

The use of sequence discriminative training, 
specifically Lattice-Free Maximum Mutual 
Information (LF-MMI) was studied by Hermann and 
Doss to improve dysarthric ASR [13]. They 
employed frame subsampling and speed perturbation 
techniques to improve dysarthric ASR and augment 
the training data. Using these techniques with LF-
MMI exhibited great results on the TORGO dataset. 
The average WER for isolated words was 42.9% and 
25.9% for sentences.  

Another work by Hermann and Doss attempted to 
develop a speech recognizer that can fit a wider 
audience and perform well for both dysarthric and 
control speakers [14]. They investigated the effect of 
the acoustic variability of dysarthric speech on 
speech recognition systems, and proposed a solution 
to mitigate this problem through combining multiple 
LF-MMI acoustic models that are trained on different 
subsets of speakers. The combination of the trained 
acoustic models was undertaken by computing the 
union of the decoding lattices with subsequent 
Minimum Bayes Risk (MBR) decoding. Speed 
perturbation was used as a form of data augmentation 
to add two additional copies of the training data in all 
the LF-MMI acoustic models. The results showed 
improvements for both control and dysarthric speech 
recognition.  

Harvill et al. proposed a data augmentation 
method through synthesizing new words that are used 
to train a CTC- based ASR system and thus expand 
the vocabulary and increase the accuracy of the ASR 
system [15]. This was accomplished by using the 

available dysarthric speech to capture the vocal 
characteristics of a dysarthric speaker through a 
parallel voice conversion system and then synthesize 
dysarthric speech that can be used to augment data for 
training the ASR system. The results showed that 
their proposed method outperformed practical 
baselines. 

Matsuzaka et al. used a Text-To-Speech (TTS) 
synthesis to augment data [8]. They trained a Deep 
Neural Network (DNN)-based TTS model using 
dysarthric speech recorded from one dysarthric 
speaker. Then, this trained TTS model was used to 
generate synthesized dysarthric speech. After that, 
both the dysarthric speaker recordings and the 
synthesized dysarthric speech were used to train the 
ASR system. The results showed an improvement in 
speech recognition error rate. 

Soleymanpour et al. worked also on the synthesis 
of dysarthric speech to improve the training of DNN-
HMM ASR system [16]. They improved a multi-
speaker end-to-end text-to-speech (TTS) system that 
they used to synthesize dysarthric speech. This 
improvement was achieved by adding a dysarthria 
severity level coefficient and a pause insertion model 
in order to be able to synthesize dysarthric speech for 
varying severity levels. Moreover, they used other 
prosody coefficients such as energy, pitch, and 
duration. The results indicated that synthesis of 
dysarthric speech for training has a significant impact 
on ASR systems and that the use of prosody 
coefficients helped in reducing WER. 

Yue et al. proposed a multi-stream model which 
consists of convolutional and recurrent layers. They 
used raw magnitude spectra of the source and filter 
components [17]. The authors separated the vocal 
tract and excitation elements through cepstral 
processing and recombined them using multi-stream 
CNNs. They also used speed perturbation to augment 
data. The authors showed that multi-stream 
processing makes use of the two information streams, 
the vocal tract and excitation, and assists in 
normalizing speaking style and speaking attributes. 
This can be beneficial in handling dysarthric speech 
which is known for its large inter-speaker and intra-
speaker variability. The results showed that the 
proposed model reduced the absolute WER by up to 
1.7% compared to MFCC baseline. 
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Afterwards, the authors worked with Heidi 
Christensen and Jon Barker to further explore the 
effectiveness of using raw waveform acoustic 
modeling, which is task-specific, instead of hand-
crafted features [18]. This was done to include all 
task-relevant information and avoid discarding useful 
information. They also examined the parametric 
CNNs that require less training data, in comparison 
to nonparametric CNNs, which can compensate for 
the scarcity of dysarthric data. In addition, the authors 
studied the effectiveness of data augmentation and 
multi-stream acoustic modeling through the 
combination of parametric and non-parametric CNNs 
that are fed by raw waveform and hand-crafted 
features. They used speed perturbation to increase the 

amount of training data by three folds: slower, 
original, and faster. The results showed the 
effectiveness of using parametric models with data 
augmentation to deal with the data scarcity problem. 
Moreover, the parametric CNNs significantly 
outperformed the non-parametric CNNs in the 
experiments conducted using the TORGO dataset. 
Also, multi-stream acoustic modeling was able to 
further improve the model’s performance. Table I 
summarizes the reviewed papers in data 
augmentation approach, the techniques used, and 
error rates. Error rates are calculated using words, 
characters, or phonemes i.e., Word Error Rate 
(WER), Character Error Rate (CER), or Phoneme 
Error Rate (PER).

TABLE I.  SUMMARY OF DATA AUGMENTATION APPROACH PAPERS 

Ref. Year Method Techniques Datasets Error Rate 

[6] 2018 
Speed & temporal 

augmentation 

-DNN-HMM ASR 

-RFC 
UASpeech 

Lowest overall WER 24.82% (using 

tempo augmentation) 

[9] 2019 
Multiple multilingual 
databases 

LAS model (2 listeners & 2 
spellers) 

- Dysarthric speech (2 Japanese 

speakers + TORGO (English)) 
-Non-dysarthric (ATR Japanese 

speech database) 

Avg. top-1 error 26.6% (CER)* 
Avg. top-3 error 22.05% (CER)* 

[11] 2019 
Speech tempo 
augmentation 

-GMM-HMM ASR  
-Hybrid DNN-HMM with TDNN 

UASpeech 

Lowest avg. WER 30% (augmentation+ 

speaker-based speech tempo 

adjustment) 

[10] 2020 

Speed augmentation, 
VTLN warp & time warp + 

data combination (normal 

& dysarthric) 

-Time delay deep neural network 
factorization (TDNN-F) 

-VTLN warp 

-Time warp 

-English and Mandarin 

dysarthric speech 
-Common voice English dataset 

Lowest WER for English 4.30% (using 
combined dysarthric +common voice) 

Lowest WER for Mandarin 6.08% 

(using dysarthric speech only) 

[12] 2020 VM-MRFE 
Hybrid DNN-HMM based ASR 

system 

-UASpeech 

-Tamil corpus by authors 

Lowest avg. WER for English 
is 18.33% (using MRFE) * 

Lowest avg. WER for Tamil is 30.15% 

(using MRFE) * 

[13] 2020 Speed perturbation 

subspace GMM - 
HMM/DNN (TDNN model 

trained with LF-MMI objective 

function) 

-Pre-trained on LibriSpeech 

(only for HMM/DNN models) 
-TORGO (training and testing) 

Lowest avg. WER 42.9% (isolated 
words) 

25.9% (sentences) using LF-MMI with 

10 ms frame shift 

[14] 2021 Speed perturbation 

-LF-MMI acoustic models 

-subspace GMM 

-DTW distance  

-UASpeech + TORGO 

(both control and dysarthric 

speakers) 

Lowest avg. WER 42.2% for isolated 
words (combination of 3 models) 

Lowest avg.WER 25.9% for sentences 

(model trained on both dysarthric 
+control speech)  

[15] 2021 
Synthesis of dysarthric 

speech 

Attention-Based Voice 
Conversion - DTW (for 

alignment) 
-CTC-based ASR system 

UASpeech 
Lowest avg.WER 29.3% (using 

attention +LM) 

[8] 2022 
Synthesis of dysarthric 

speech 

-DNN based TTS model 

-CTC-based ASR model 

Text from ATR dataset – 
recorded speech by authors - 

JSUT corpus (non-dysarthric)  

Lowest PER 46.22 (using recoded data 

+ synthetic data) 
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[16] 2022 
Synthesis of dysarthric 

speech 

-modified FastSpeech2 (multi 

talker TTS as a voice conversion 

system) 

-DNN-HMM ASR model 

TORGO 
Lowest avg.WER 39.2% 

(Using the second experiment)  

[17] 2022 Speed perturbation CNN with recurrent layers  TORGO 
Lowest avg.WER 40.6% (speed 

perturbation +Mag feature) 

[18] 2022  Speed perturbation 
-Parametric CNNs  

-Non-parametric CNNs  
TORGO 

Lowest WER 33.1% 

(FBank(CNN)+Raw(Parz) with 
Concat-2) 

  * Indicates that the average WER was not directly provided in the paper and therefore it was calculated using the formula: Avg. = sum of error rates reported/number of error rates. 

B. Enhancement of dysarthric speech

Enhancement of dysarthric speech is another 
approach that works on dysarthric speech signals to 
make it more intelligible and thus can be recognized 
by listeners and automatic speech recognition 
systems [19]. Bhat et al. investigated the 
enhancement of dysarthric speech features to match 
the features of normal speech and thus enable ASR 
systems to recognize it [20]. A Time-Delay Neural 
Network based Denoising Autoencoder (TDNN-
DAE) was used in this study to enhance dysarthric 
speech. Then, a DNN-HMM ASR system was used 
to recognize the enhanced speech. The authors 
evaluated the proposed method for speaker-
independent and speaker-adaptive based ASR 
systems. The results revealed that the enhancement of 
dysarthric speech led to an absolute improvement of 
13% in the performance of the speaker-independent 
ASR system and 3% in the performance of the 
speaker-adaptive ASR system. Moreover, the 
analysis showed that the ASR performance 
significantly improved at all severity levels of 
dysarthria. 

Wang et al. suggested the use of voice conversion 
method for a dysarthric speech reconstruction task 
[21]. The proposed method included three steps. 
First, a Text-To-Speech system (TTS) was trained 
with transcribed normal speech. Second, the text-
encoder of this trained TTS system (teacher) was 
used to train a speech-encoder (student) to extract 
linguistic representations from transcribed dysarthric 
speech through a cross-modal knowledge distillation 
process (teacher-student framework). Third, the 
trained speech-encoder was concatenated with the 
attention and the decoder of the TTS system in the 
first step to carry out the dysarthric speech 
reconstruction task through mapping dysarthric 
speech to normal speech. The findings indicate that 
the proposed method significantly improved speech 

quality, generating a highly natural and intelligible 
speech, especially for speakers with severe 
dysarthria. A comparison between the original 
dysarthric speech and the reconstructed speech 
revealed a reduction in WER by 35.4% and 48.7% for 
speakers with low and very low intelligibility levels, 
respectively.  

Sidi Yakoub et al. proposed a speech enhancement 
technique that aims to improve the quality of 
dysarthric speech as a preprocessing step prior to its 
recognition [19]. The authors used Empirical Mode 
Decomposition and Hurst-based mode selection 
(EMDH) as an enhancement technique with deep 
learning using convolutional neural networks. First, 
the dysarthric speech is enhanced using EMDH. 
Then, the Mel-frequency cepstral coefficients are 
extracted and used as input to the CNN recognizer. 
The results indicated that the proposed approach of 
using EMDH-CNN increased the accuracy by 
20.72% when compared to HMM-GMMs baseline 
systems. Also, it increased the accuracy by 9.95% 
when compared to a CNN without a prior 
enhancement step. 

Another work that tackled the enhancement of 
dysarthric speech as a first step prior to the 
recognition process was conducted by Rajeswari et 
al. [22]. The enhancement was carried out using 
Variational Mode Decomposition (VMD) and 
wavelet thresholding. Then, the enhanced and 
reconstructed signals were fed to CNNs. This, in turn, 
enabled these networks to learn the specific features 
of dysarthric speech and, therefore, the speech model 
can support dysarthric speech recognition. The 
results showed that this method improved the 
recognition accuracy when compared to currently 
used methods based on generative models and 
artificial neural networks. Moreover, it was able to 
achieve an average accuracy of 95.95% with VMD 
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based enhancement and 91.80% without 
enhancement. 

Ding et al. proposed a multi-task Transformer for 
dysarthric ASR [23]. This Transformer performs two 
tasks: an auxiliary task that involves input feature 
reconstruction, and a main task for dysarthric speech 
recognition. The auxiliary task attempts to perform 
two reconstruction methods: a cross-domain 
reconstruction which reconstructs clear speech 
features from dysarthric speech and an intra-domain 
reconstruction that reconstructs clear speech features 
from corrupted normal speech. Both the auxiliary 
task and the main task of the Transformer share the 
same encoder network. Moreover, the authors 
designed an adaptive rebalance sampling scheme to 
optimize the utterance sampling frequency. This was 
done to mitigate the imbalance distribution of 
dysarthria datasets. The results showed that the multi-
task Transformer outperformed other baseline 
systems across all dysarthric speakers.  

Prananta investigated in his master thesis some 
methods to improve the intelligibility of dysarthric 
speech for ASR systems [24]. Three experiments 
were conducted. The first one inspected the use of 
Cycle-consistent Generative Adversarial Network for 
Voice Conversion (CycleGan-VC) to convert 
dysarthric speech to normal speech. The second 
aimed at training CycleGan-VC with parallel data 
processing and Dynamic Time Warping (DTW) as a 
speech enhancement technique to improve the 
performance of the proposed method. The third 
experiment tackled the adjustment of speech rate of 
dysarthric speech using Time Stretching (TS) to 

improve the performance of the ASR system. The 
findings indicated that the use of CycleGan-VC did 
not improve the performance of dysarthric ASR in 
terms of Phone Error Rate (PER). Moreover, training 
CycleGan-VC with DTW and parallel data provided 
minor improvements and did not improve much 
compared to dysarthric speech baseline. However, 
using time stretching for the adjustment of speech 
rate of dysarthric speech improved the ASR 
performance by 19.8% for female speakers and by 
5.5% for male speakers.   

Prananta also worked with Halpern, Feng, and 
Scharenborg on a comparison between several 
Generative Adversarial Network-based (GAN) voice 
conversion methods [25]. The authors investigated 
the effectiveness of these methods on the 
enhancement of dysarthric speech in order to improve 
dysarthric ASR. A rigorous ablation study was 
carried out as an attempt to find the most effective 
solution to enhance dysarthric speech recognition. 
The results showed that signal processing methods 
that are straightforward like time stretching and 
denoising gave comparable results to state-of-the-art 
GAN-based voice conversion methods using a 
phoneme recognition task. Moreover, the researchers 
proposed the application of MaskCycleGAN-VC that 
is used for voice conversion on time stretched speech 
as a solution to improve the recognition. This 
combination provided results that are somewhat 
better than pure time stretching for dysarthric 
speakers with mid to high severity. Table II 
summarizes the reviewed papers in enhancement 
approach, the techniques used, and error rates.

TABLE II.  SUMMARY OF ENHANCEMENT APPROACH PAPERS 

Ref. Year Method Techniques Datasets Error Rate 

[20] 2018 
Features enhancement using 
deep denoising autoencoders 

-TDNN-DAE (enhance dysarthric 

speech) 

-DNN-HMM ASR system 

UASpeech 
Lowest WER 18.54% using 
best configuration ***  

[21] 2020 

Dysarthric speech 

reconstruction using 
knowledge distillation (KD) 

-Tacotron (TTS model) 

-WaveRNN (synthesize waveform) E2E 
dysarthric speech reconstruction system 

-LJSpeech dataset (normal 
speech) 

-UASpeech (dysarthric & 

normal speech) 

Avg. WER 33% * 

[19] 2020 
Spectral subtraction, Wiener 

filtering and EMDH 

-EMDH (enhancement technique) 

-CNN system 
Nemours 

Lowest global WER 35.14% 
(using EMDH-CNN with10-

fold cross-validation) ** 

[22] 2022 Denoising  
-VMD & wavelet thresholding 

(enhancement technique) 
UASpeech 

Overall avg. WER 4.05% 

(VMD+CNN) ** 
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 * Indicates that the average WER was not directly provided in the paper and therefore it was calculated using the formula: Avg = sum of error rates reported/number of error rates. 

 ** Indicates that the results were given in terms of recognition accuracy, and it was converted to error rate for comparison reasons using the formula: Error rate = 100-accuracy. 

 *** Trained on normal +TDNN-DAE enhanced dysarthric speech & tested on Temporally adapted+TDNN-DAE enhanced dysarthric speech in speaker adaptive scenario.

C. Speech and acoustic features 

Speech and acoustic features can be utilized, 
improved, or normalized to support dysarthric ASR 
as dysarthric speech exhibits large inter-speaker and 
intra-speaker variabilities [7]  [26]. Mathew et al. 
conducted a study to compare different feature 
extraction methods and investigated which features 
are most suitable to dysarthric ASR tasks [27]. The 
experiment was carried out using an HMM-based 
recognition system. The features that were 
considered in the comparison are Perceptual Linear 
Prediction (PLP), Mel-Frequency Cepstral 
Coefficients (MFCC), reflection coefficients and 
filter bank feature sets. The TORGO dataset was used 
to study and compare the performance of these 
features. The results showed that PLP is the most 
suitable feature for a dysarthric ASR task. Also, the 
researchers found that MFCC and PLP were able to 
provide better results than reflection coefficients and 
filter bank feature sets.  

Kim et al. studied the effect of using 
Convolutional Long Short-Term Memory Recurrent 
Neural Networks (CLSTM-RNNs) on dysarthric 
ASR [28]. They hypothesized that using CLSTM-
RNNs can capture the distinct characteristics of 
dysarthric speech where CNNs can be used to extract 
effective local features and LSTM-RNNs can be used 
to model features temporal dependencies. The 
experiment included four types of CLSTM-RNNs: 
Time domain CNN with LSTM-RNN (T-CLSTM-
RNN), Frequency domain CNN with LSTM-RNN 
(F-CLSTM-RNN), Time Frequency CNN with 
LSTM-RNN (TF-CLSTM-RNN), and Parallel Time 
Frequency CNN with LSTM-RNN (PTF-CLSTM-
RNN). The results showed that CLSTM-RNNs were 

able to provide a substantial improvement when 
compared to using only CNN or only LSTM-RNN. 
Of the four types in the experiment, TF-CLSTM-
RNN achieved the best overall performance. 

Hu et al. presented two dysarthric speech 
recognition systems for Cantonese and English [29]. 
They used a Gated Neural Network (GNN) modeling 
technique for both systems to integrate acoustic 
features with visual features and optionally with 
prosody features that are based on pitch. A novel 
Bayesian GNN Audio-Visual Speech Recognition 
(AVSR) architecture was employed in the English 
recognition task to obtain a robust integration of 
acoustic and visual features. As for the Cantonese 
recognition task, they used pitch features to assist 
acoustic features. The performance of the proposed 
systems was compared with Google speech 
recognition API and human recognition results. The 
findings showed that both systems outperformed 
Google’s speech recognition API, and the English 
system outperformed human recognition for all 
speakers.   

Zaidi et al. investigated the concatenation of 
several variants of Jitter and Shimmer with Mel-
Frequency Cepstral Coefficients (MFCC) and Power 
Normalized Cepstral Coefficients (PNCC) which are 
speech parameterization coefficients to improve 
dysarthric ASR [26]. Jitter represents a quantification 
of small deviations of true periodicity i.e., cycle-to-
cycle F0 perturbation while Shimmer is the analogue 
of Jitter and is calculated by the amplitude A0 contour 
instead of F0 contour. The authors developed an 
automatic acknowledgment of continuous 

-CNN model 

[23] 2021 

Speech feature reconstruction 

(intra & cross-domain 

reconstruction) 

-Multi-task Transformer (hybrid 
CTC/attention E2E ASR architecture) 

-LibriSpeech 
-TORGO  

Lowest avg. WER 15.88% 

(proposed model with 

rebalance sampling)* 

[24] 2021 
DTW, parallel data 
processing, TS, denoising, 

VC 

-CycleGAN-VC + MaskCycleGAN-VC 
(voice conversion models) 

-Pre-trained HMM-based ASR  

-UASpeech 

-Model pre-trained on TIMIT  

Lowest avg. PER for males 
70.3% & for females 76.1% 

(using Dysarthric &TS) 

[25] 2022 

DTW, parallel data 

processing, TS, 2-step 
adversarial loss, denoising, 

VC) 

-GAN architectures (CycleGAN-VC, 

DiscoGAN, MaskCycleGAN-VC) 

-Pre-trained HMM-based ASR  

-UASpeech 
- Model pre-trained on TIMIT 

Lowest avg. PER: males 

66.4% (dysarthric+TS) - 
females 73.2% 

(MaskCycleGAN-VC+TS) 
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pathological speech system to help dysarthric 
speakers and help doctors make a primary diagnosis. 
The results indicated that the combination of PNCCs 
coefficients with the Shimmer Ampl PQ3 classical 
Baken or with the Shimmer CV yielded the best 
results compared to their basic system.  

Another work by Zaidi et al. investigated DNNs 
ability to improve dysarthric ASR using CNNs and 
LSTM neural networks [30]. First, they compared the 
use of different input features with dysarthric speech 
recognition systems. These features were Mel-
Frequency Spectral Coefficients (MFSCs), MFCCs, 
and PLPs. Then, they compared the performance of 
CNN and LSTM architectures with HMMs and 
GMMs models to find the best dysarthric speech 
recognizer. The findings showed that the best result 
was achieved by a speaker-dependent CNN using 
PLP with an accuracy of 82%. This result constitutes 
an improvement of 32% and 11% when compared to 
GMM-HMM and LSTM based systems’ 
performance, respectively. 

Chandrakala presented a review and an analysis of 
different approaches including discriminative, 
generative, hybrid model-based approaches and 
unsupervised approaches [31]. The author also 
proposed generative model-driven feature learning 
approaches for dysarthric ASR. She compared the 
results of the proposed model with two different types 
of discriminative classifiers: Transition Embedding 
Support Vector Machine (TE-SVM) and Likelihood 
Embedding Support Vector Machine (LE-SVM). The 

results showed that even though TE-SVM gave a 
good performance due to the increase in the number 
of features, it was not able to improve the 
discrimination when it was compared to LE-SVM. 
This is because LE-SVM was able to capture 
discriminative information that can lead to higher 
accuracy. Moreover, the effective fixed dimensional 
representation that can be formed using log 
likelihood probabilities provided by HMMs gave 
better performance. 

Hernandez et al. explored the effectiveness of 
using Wav2Vec, Hubert, and multilingual XLSR 
self-supervised speech representations as features for 
training an acoustic model for dysarthric speech 
recognition [32]. They used three corpora 
representing different types of dysarthria from 
different languages: UASpeech (English), PC-GITA 
(Spanish), and EasyCall (Italian). The findings 
showed that using the extracted features from the 
multilingual XLSR model provided the lowest WERs 
for all datasets: English, Italian, and Spanish. It was 
observed that the features extracted from the 
multilingual model XLSR were able to provide lower 
WERs in comparison to other models although these 
models were trained on larger amounts of data but 
from English only. This can be attributed to the fact 
that a multilingual model contains more variations 
and thus is more suitable for dysarthric speech known 
for its variation as well. Table III summarizes the 
reviewed papers in speech and acoustic features 
approach, the techniques used, and error rates. 

TABLE III.  SUMMARY OF SPEECH AND ACOUSTIC FEATURES APPROACH PAPERS 

Ref. Year Method Techniques Datasets Error Rate 

[27] 2018 
MFCC, PLP, filter bank & 

reflection coefficients 

HMM-based recognition system 

(isolated word recognizer) 
TORGO 

Lowest WER 36.73% (using PLP) 

** 

[28] 2018 
Features in spectral, temporal, 
& spectro-temporal domains 

HMM-based dysarthric ASR 

systems (GMM-HMM, DNN-
HMM, CNN-HMM & CLSTM-

RNN-HMM) 

9 dysarthric patients 

Lowest avg. PER 30.6% (average 

of all testing sessions using TF-

CLSTM-RNN) 

[29] 2019 

Acoustic features (Mel-scale 

log filter bank (FBK)), visual 
features & prosody based on 

pitch features 

-GNN ASR (Cantonese system) 

-Bayesian GNN AVSR (English 

system) 

-UASpeech (English) 
-CUDYS (Cantonese) 

Avg. WER 31.2% (English)* 
Avg. CER 39.33% (Cantonese)* 

[26] 2019 
MFCC, PNCC, JITTER & 

SHIMMER coefficients 

Hidden Models of Markov 

(HMM) (Basic system) 
Nemours 

Lowest WER 51.81% (with 

PNCC_0_SHIMMER CV) ** 
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[30] 2021 MFCCs, MFSCs, PLPs 
-CNN system 

-LSTM system 
Nemours (dysarthric speech) 

Lowest global PER 37.31% (CNN-

based system with PLPs+ 

Poly1ReLU activation function) ** 

[31] 2020 MFCC 
Left to right HMM with 2 types of 
discriminative classifiers TE-

SVM & LE-SVM 

UA-Speech (isolated words 

utterances) 

Overall WER 12.09 % (using LE-

SVM) ** 

[32] 2022 
Self-supervised speech 

representations as features 

-Acoustic models (E2E with a 

conformer encoder & transformer 
decoder) 

-wav2vec, Hubert & Multilingual 

XLSR (for speech 
representations) 

-Pre-training: LibriVox 

(wav2vec, Hubert) & Common 
Voice, Babel & Multilingual 

Libri-Speech (XLSR) 

-UASpeech, PC-GITA 
(Spanish), EasyCall (Italian) 

Lowest WER for English: 

XLSR model: 
26.1% (speaker dependent) 

47.3% (speaker independent) 

WER 12.9% (PC-GITA) & 16.5% 
(EasyCall) using XLSR-PD model  

 *Indicates that the average WER was not directly provided in the paper and therefore it was calculated using the formula: Avg = sum of error rates reported/number of error rates. 

 **indicates that the results were given in terms of recognition accuracy, and it was converted to error rate for comparison reasons using the formula: Error rate = 100-accuracy. 

 

D. Adaptation 

Researchers who employed adaptation mainly 
worked on the adaptation of the model itself, acoustic 
model or the pronunciation dictionary (lexicon) 
which are used in speech recognition to adapt the 
system to dysarthric speech/speakers [33]  [34]. 
Moreover, models can be adapted to each dysarthric 
speaker to personalize the model to the targeted 
speaker [35]. In addition, Transfer Learning (TL) and 
fine-tuning can be utilized to adapt the weights of the 
model to improve dysarthric ASR [35]  [36]  [37]. 
This approach can be employed to alleviate the 
problem of data scarcity and to speed up the training 
process. In such works, researchers would transfer 
the learning of unimpaired speech or impaired speech 
of another language then fine-tune the model using 
the limited dysarthric speech available [38]. Others 
worked on domain or cross-domain adaptation and 
severity-based speaker adaptation [33] [39] [40]. 

The Chinese University of Hong Kong (CUHK) 
developed an ASR system for dysarthric speakers 
using the UASpeech database [40]. The authors 
constructed a number of DNN acoustic models. First, 
they constructed these models with a deep and 
stacked architecture. Then, they developed some of 
the models’ advanced variants using LSTM-RNNs 
and Time Delayed Neural Networks (TDNNs). These 
variants were explored to study the benefit of longer-
range context modeling. In addition, they utilized 
Learning Hidden Unit Contributions (LHUC) to 
perform speaker adaptation in order to handle inter-
speaker variability. Moreover, to deal with feature 
extraction bottleneck with stacked DNN systems, the 
researchers used a semi-supervised Complementary 
Auto Encoder (CAE). Furthermore, to improve the 
recognition performance, cross domain adaptation 

was employed. Cross domain adaptation transforms 
the mean and variance of out of domain systems to be 
able to describe the distribution of dysarthric speech. 
This is done under the supervision of the recognition 
outputs from the proposed UASpeech stacked hybrid 
DNN system. The authors utilized two out of domain 
systems which were trained separately on broadcast 
news and switchboard data and adapted towards the 
UASpeech data and then adopted in a combination of 
six systems. The results showed that the final 
combined system provided the best performance with 
an overall word accuracy of 69.4% using a test set of 
16 speakers. 

Among the significant works in relation to ASR of 
non-standard speech is a project known as Euphonia 
which was conducted by a group of researchers from 
Google and Amyotrophic Lateral Sclerosis (ALS) 
therapy development institute [41]. In this study, two 
types of non-standard speech were included: 
dysarthric and accented. Two models were adopted: 
RNN Transducer (RNN-T) and LAS. These models 
were fine-tuned using the collected data to achieve 
state-of-the-art results for dysarthric and heavily 
accented speech. The results showed that fine-tuning 
on small amounts of non-standard speech can yield 
good results. The researchers indicated that through 
using approximately one hour of data, a personalized 
ASR model that outperforms cloud-based services 
can be created. Regarding WER, there was a 70% 
improvement over the base model for dysarthric 
speech and 35.1% improvement for accented speech. 
For the RNN-T model, fine-tuning only the first layer 
of the encoder and the joint layer, which usually 
happens within the first 5-10 minutes of training, 
achieved 90% of total relative improvement. 
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Takashima et al. employed transfer learning for 
dysarthric ASR [38]. This was accomplished through 
transferring two types of knowledge: the phonetic 
and linguistic characteristics of unimpaired Japanese 
speech, and the dysarthric characteristics of 
dysarthric non-Japanese speech. The rationale behind 
this transfer is to enable the use of deep learning with 
the limited dysarthric Japanese speech data available. 
After transferring this knowledge, the authors fine-
tuned the model using Japanese dysarthric speech. 
The results showed that the use of additional speech 
data and transfer learning can significantly improve 
speech recognition performance. Nearly a year later, 
Takashima et al. presented another work on 
dysarthric ASR based on deep metric learning [36]. 
The motivation behind this work is that dysarthric 
speech considerably fluctuates even if the person was 
repeating the same sentence. Therefore, dysarthric 
speech tends to have great variation even within 
recognition classes. The proposed system learns an 
embedded representation where the distance between 
sentences within the same class is small and between 
sentences of different classes is large enabling the 
system to distinguish dysarthric speech easily. 
Moreover, the results showed that using deep metric 
learning consistently improved word-recognition 
accuracy. Furthermore, they evaluated the proposed 
system in combination with transfer learning using 
additional speech data from an unimpaired person 
which provided further improvement in performance.   

Xiong et al. investigated the application of an 
improved transfer learning framework to 
personalized ASR models for dysarthric speakers 
[35]. A CNN-TDNN-F ASR acoustic model which 
was trained on source domain data was utilized to 
transfer and adapt the neural network weights using 
the limited data from dysarthric speakers in the target 
domain. The evaluation was based on UASpeech. 
The findings indicated that linear weights in neural 
layers played a significant role in improving 
dysarthric speech modeling. In comparison to 
speaker-dependent training, the proposed model 
achieved an average of 11.6% relative recognition 
improvement. Moreover, it achieved an average of 
7.6% relative recognition improvement when 
compared to data combination training. Also, further 
recognition performance improvement that reached 
2% when compared to transfer learning baseline was 

gained for speakers with moderate to severe 
dysarthria. This was accomplished through a 
selection of utterance-based data from the source 
domain instead of speaker-based data selection 
resulting in more accurate selection of the most 
beneficial data from the source domain. The authors 
offered two ways to do that; using incremental 
transfer learning through constructing an 
intermediate domain or increasing the training pool 
of the target domain. Based on the results, 
incremental learning outperformed data combination 
except for very severe dysarthric speech.  

A two-step acoustic model adaptation approach 
for dysarthric ASR was proposed by Takashima et al. 
[37]. The researchers utilized transfer learning with 
adaptation to improve the recognition of dysarthric 
speech. They focused on athetoid cerebral palsy that 
causes involuntary muscle movements. The 
motivation behind using a two-step adaptation 
approach stems from the fact that dysarthric speakers 
generally have different speaking styles when 
compared to non-dysarthric speakers. Also, each 
dysarthric speaker can benefit from this adaptation 
approach due to their unique differences and causes 
of disability. Therefore, having two steps can assist in 
achieving better results. The first step is used to train 
a speaker-independent non-dysarthric model using 
dysarthric speech from many speakers to get the 
general characteristics of dysarthric speech. This was 
done using a baseline model that was pre-trained on 
non-dysarthric speech. Then, and by utilizing transfer 
learning, they retrained the model on the dysarthric 
speech of multiple speakers to get a speaker 
independent dysarthric model. The second step uses 
the resulting speaker-independent dysarthric model 
and trains it on dysarthric speech of the target speaker 
to adapt to that specific speaker. The results gained 
through these two steps are better than adapting the 
non-dysarthric model immediately to the targeted 
speaker in one step. 

Wang et al. proposed a way to improve dysarthric 
ASR through transfer learning and model re-
initialization [42]. Instead of directly fine-tuning a 
pre-trained base model for dysarthric speech, the 
authors suggested reinitializing the base model via 
meta-learning. They explained that the mismatching 
nature of statistic distribution between dysarthric and 
normal speech can limit the adaptation performance 
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of the base model. Thus, a meta-learning model that 
reinitializes the base model to learn dysarthric speech 
knowledge can adapt faster to unseen dysarthric 
speakers. The Model-Agnostic Meta Learning 
(MAML) and Reptile algorithms were utilized and 
extended to meta update the base model through a 
repeated simulating adaptation to different dysarthric 
speakers. The findings showed that the enhanced 
model performed better and adapted faster to unseen 
dysarthric speech. Using UASpeech, the best model 
was able to achieve a reduction in WER of 54.2% 
compared to the base model without fine-tuning. 
When compared to the base model that was directly 
fine-tuned, the proposed model achieved 7.6% 
relative WER reduction. These results are 
comparable to those of the state-of-the-art hybrid 
DNN-HMM model. 

Al Qatab et al. employed several adaptation 
techniques to determine the adequate amount of 
adaptation data needed for speaker adaptation  [33]. 
Due to the difficulty of generating speech by 
dysarthric speakers, identifying a saturation point 
where additional data will not result in an increase in 
the recognition accuracy can save their efforts and 
time. The authors investigated the use of two 
adaptation techniques: Maximum Likelihood Linear 
Regression (MLLR) and Maximum A Posterior 
(MAP). They experimented with each technique 
individually and with a combination of both in 
different sequences; MAP+MLLR sequence and 
MLLR+MAP sequence. Linear regression between 
the recognition accuracy and the data size was used 

to determine the saturation point. Moreover, the 
adaptation and test data were categorized according 
to severity level to yield a severity-based speaker 
adaptation. The results showed that the saturation 
point of MAP is lower in general than MLLR when 
used individually which means that more adaptation 
data is needed by MLLR to reach the lowest WER. 
Also, the sequence MLLR+MAP increases the 
effectiveness of the adaptation as the accuracy 
increases with each additional adaptation data. This 
shows that when adaptation techniques are combined, 
the order of the sequence affects the saturation point. 

Sawa et al. proposed a two-step method to adapt 
the pronunciation dictionary to improve dysarthric 
ASR [34]. First, they carried out a phoneme 
recognition task using the target speaker’s speech to 
identify the actual pronunciation of words by the 
dysarthric speaker and use this information later to 
perform a pronunciation analysis. Second, they 
extracted rules based on analyzing misrecognition 
patterns found in the first step and then adapted the 
dictionary by adding these pronunciations to it. After 
that, the adapted dictionary was used to train a 
speaker-dependent model for the targeted dysarthric 
speaker as well as to recognize their speech. The 
evaluation was conducted on a large vocabulary 
continuous speech recognition task. The results 
showed that the adapted dictionary was able to 
decrease the WER, and that consonants (mainly 
unvoiced) tend to be misrecognized. Table IV 
summarizes the reviewed papers in adaptation 
approach, the techniques used, and error rates.

TABLE IV.  SUMMARY OF ADAPTATION APPROACH PAPERS 

Ref. Year Method Techniques Datasets Error Rate 

[40] 2018 

Speaker 

adaptation & 

cross-domain 
adaptation 

-GMM-HMM, DNN, TDNN, LSTM-

RNN & Systems Combinations. 
-CAE (for feature extraction bottleneck) 

-LHUC (speaker adaptation) 

-Cross domain adaptation 

-Switchboard & broadcast news dataset 
(out of domain) 

-UASpeech 

Lowest WER 30.6 % 

(combination of six systems)** 

[41] 2019 

Transfer 

Learning (TL) 

& fine-tuning 

E2E sequence-to-sequence models: 

Bidirectional RNN-T model 

LAS model 

-Training:  RNN-T (Google voice-search 

traffic), LAS (LibriSpeech) 

-Fine-tuning (recorded dysarthric speech) 

Lowest avg. WER 20.9% for 

severe dysarthria &10.8% for 

mild dysarthria (Using RNN-T) 

[38] 2019 
Transfer 

learning 
LAS model 

- 5 Japanese dysarthric speakers 

-ATR (unimpaired Japanese) 
-TORGO (English dysarthric)  

Lowest avg. PER 25.69% (trans. 

3 – two-decoder LAS) 

[36] 2020 
Transfer 
learning 

-GMM-HMM (base model) 
-DNN-based model with TL  

- 5 Japanese dysarthric speakers 
-ATR dataset  

Lowest avg. WER 10.21% 

(proposed method+ TL with 

updating last layer +ArcFace)** 
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[35] 2020 
Transfer 

learning 

-Hybrid DNN-HMM ASR (training) 
-CNN-TDNN-F ASR acoustic model 

(baseline of TL) 

UASpeech 
Lowest avg. WER 30.76% (SD 

→ CTL) 

[37] 2020 
Transfer 
learning 

LF-MMI (baseline model) 
(TDNN) layers  

- 4 Japanese dysarthric speakers 

-ATR dataset 
-CSJ (Corpus of Spontaneous Japanese 

(non-dysarthric)) 

Lowest avg. WER 53.7% (2-step 
adaptation+ LR factor=1)* 

[42] 2021 

Transfer 

learning & re-

initialization 

-MAML & Reptile algorithms for Meta-

learning & Re-initialization. 

-Base models (LAS, QuartzNet) 

-UASpeech (dysarthric speech) 
-LibriSpeech (normal speech) 

Lowest overall WER 30.5% 

(base QuartzNet +Reptile re-

initialization & adaptation) 

[33] 2021 

MLLR, MAP, 
MLLR+MAP, 

MAP+MLLR, 

severity-based 
speaker 

adaptation 

-BSAM (Baseline Speech Acoustic 
Model) 

-Linear regression (for saturation point) 

Training: normal speech (Wall Street 

Journal +TIMIT) + dysarthric 

(UASpeech,TORGO). Adaptation & 
testing: dysarthric (Nemours) 

Lowest avg. WER 9.66% 
(MLLR + MAP sequence 

adaptation) * 

[34] 2022 

Pronunciation 

dictionary 

adaptation + 
transfer learning 

-A hybrid CTC/attention model (E2E 

ASR for phoneme recognition task) 
-DNN-HMM hybrid model (word-

recognition task) trained based on LF-

MMI criterion  

- 2 Japanese dysarthric speakers 

- CSJ (to construct baseline general 
dictionary, pre-train hybrid CTC/attention 

model, & train LM in word recognition 

model) 

WER 46.32% (1st speaker) & 

59.46% (2nd speaker)  

(dependent model, using the 
adapted dictionary) 

  *Indicates that the average WER was not directly provided in the paper and therefore it was calculated using the formula: Avg = sum of error rates reported/number of error rates. 

 **indicates that the results were given in terms of recognition accuracy, and it was converted to error rate for comparison reasons using the formula: Error rate = 100-accuracy. 

 

E. Hybrid approaches in dysarthric speech 

recognition 

Woszczyk et al. proposed the use of Domain 
Adversarial Neural Networks (DANN) for dysarthric 
ASR [43]. The proposed model is a speaker-
independent speech recognition system that 
combines domain-invariant features with domain 
adversarial training to cope with the limitation of 
dysarthric speech data. The researchers used an End-
to-End (E2E) CNN as a baseline system which takes 
raw audio as input to perform a classification task on 
ten spoken digits. UASpeech was used, and the 
results were compared to a speaker-dependent model, 
a speaker-adaptive model, and Multi-Task Learning 
(MTL) models. The speaker-adaptive model is the 
speaker-independent model that is fine-tuned on the 
speech of a certain speaker. The results showed that 
the proposed model outperformed the baseline CNN 
model by an absolute recognition rate of 12.18%. 
When compared to the speaker-adaptive model, it 
achieved comparable results. Though the model 
provided similar results to multi-task learning models 
with labeled dysarthric speech data, it performed 
better with unlabeled data. 

Lin et al. proposed the use of E2E Automatic 
Speech Recognition (ASR) and Automatic Speech 
Attribute Transcription (ASAT) for patients with 

dysarthria [44]. The study presented a staged 
knowledge distillation method for dysarthric patients 
to deal with the low resource challenge in training 
ASR systems and provide an effective teacher-
student learning approach. All the models were pre-
trained using normal speech from LibriSpeech. As for 
retraining and due to limited dysarthric data, the 
researchers used all speech samples in TORGO 
(dysarthric and normal). They inspected the 
effectiveness of the proposed staged conditional 
teacher-student method together with four different 
systems. Different approaches were used in these 
systems to perform fine-tuning to adapt the system to 
dysarthric speech. The first system was fully fine-
tuned on dysarthric speech from TORGO. The 
second adopted 100 hours of normal speech data from 
LibriSpeech for data augmentation and then the net 
was fully fine-tuned. In the third system, only the 
decoder was fine-tuned. As for the fourth system, the 
model was refactored where the layers of the decoder 
were shared and fine-tuned with speech perturbation. 
For evaluation, the models were tested using 
dysarthric speech from TORGO. The results showed 
that the accuracy of the proposed models 
significantly outperformed the traditional methods 
with a reduction of around 38.28% relative phone 
error rate and 48.33% relative attribute detection 
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error rate when compared to their baselines. Utilizing 
data augmentation through using additional normal 
speech and increasing TORGO dysarthric speech 
samples using speed perturbation yielded the lowest 
phone error rate of 29.84%. Moreover, the proposed 
method has potential to be used as a medical 
diagnostic aid and as a rehabilitation tool for patients 
with dysarthria.  

Yue et al. investigated several methods to improve 
continuous dysarthric ASR systems [45]. They 
explored the effectiveness of using an AutoEncoder 
BottleNeck feature extractor (AE-BN) that is pre-
trained on normal speech data from LibriSpeech and 
fine-tuned on dysarthric speech from TORGO. 
Furthermore, they studied the effect of combining 
acoustic features with the features extracted by AE-
BN that was pre-trained on typical speech. Moreover, 
they employed speed perturbation to augment data 
during the training phase. Also, two multi-task 
optimization techniques were exploited: joint 
optimization and monophone regularization. The 
results showed that the addition of AE-BN features 
resulted in a reduction of WER by 2.63% compared 
to the baseline system. Applying joint optimization 
and monophone regularization techniques led to a 
further reduction of WER by 0.65% and 2.33%, 
respectively.  

Xie et al. discussed the acoustic variability among 
dysarthric speakers which is difficult to be precisely 
modeled [46]. This issue motivated the researchers to 
present a Variational Auto-Encoder based Variability 
Encoder (VAEVE) that can be used to explicitly 
encode dysarthric speech variability. VAEVE 
reconstructs the input acoustic features using low 
dimensional latent variable and phoneme information 
so that the latent variable is forced to encode the 
variability information. The variability encodings are 
used as auxiliary features for acoustic modeling. The 
authors experimented with different systems to find 
the best solution to dysarthric speech recognition. In 
one of the systems, they applied the variability 
encodings to the system trained with data 
augmentation using speed perturbation. Then, LHUC 
adaptation is applied to test data. This system yielded 
the lowest overall WER. The results showed that 
applying variability encodings was able to improve 
the performance of the systems in comparison to the 
baseline system without them. 

Lin et al. proposed a study to recognize Mandarin 
speech commands of dysarthric speakers using a 
CNN with a Phonetic PosteriorGram (PPG) speech 
feature system [47]. They compared their proposed 
model CNN-PPG to a CNN-MFCC model and an 
ASR-based system. The authors also employed data 
augmentation to obtain more training data that is 
needed for deep learning model training. The speech 
commands of the training set in the proposed system 
were converted to MFCC features and then to PPG 
features which were used to train the CNN model. 
The results indicated that the proposed Speech 
Command Recognition (SCR) system (CNN-PPG) 
provided better results than CNN-MFCC and ASR 
systems with a recognition accuracy of 93.49%. This 
shows that the PPG speech feature can achieve better 
recognition performance than MFCC. Also, the 
proposed system used a smaller model size with 
nearly half the number of parameters compared to the 
other models which can reduce the implementation 
cost for the users.  

Green et al. investigated the performance of 
personalized automatic speech recognition systems 
for dysarthric speakers against the performance of 
Speaker Independent ASR models (SI) and human 
transcribers [48]. A group of 432 speakers with 
different speech impairment types, causes, and 
severity levels recorded their speech using a web-
based application. The first independent ASR model 
(SI-1) that was used as a benchmark was Google’s 
commercial ASR system accessed through speech-to-
text API. The second one (SI-2) was an end-to-end 
ASR model based on RNN-T architecture. The 
researchers created a personalized ASR model based 
on (SI-2) for each participant using their own 
recordings. For the adaptation process, the authors 
worked on optimizing the fine-tuning procedure 
because the recorded data of each speaker was only 
between 15 minutes and 2 hours. They found that 
updating the first five encoder layers instead of the 
whole model prevented overfitting. Moreover, the 
authors utilized SpecAugment to increase the 
system’s robustness and found that it worked best 
when they greatly increased the time masking and 
reduced the frequency masking settings. The results 
indicated that the personalized ASR models 
outperformed the speaker-independent models 
significantly and provided an accuracy that was 
similar or better than human listeners. The median 
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WER of the proposed personalized ASR models was 
4.6%.  

Shahamiri introduced Speech Vision, a dysarthric 
ASR system, that addressed some challenges usually 
faced by ASR systems [49]. These challenges are 
dysarthric speech data scarcity, phoneme labeling 
imprecision, and the alternation and inaccuracy of 
dysarthric phonemes. In Speech Vision, speech 
features are extracted visually to identify the shape of 
the words pronounced by dysarthric speakers which 
leads to the elimination of phoneme related 
challenges. As for the problem of data scarcity, 
Speech Vision employed three strategies: visual data 
augmentation, synthetic data generation, and transfer 
learning. The results showed that Speech Vision 
outperformed other dysarthric speech recognizers 
that use the same dysarthric data. Moreover, Speech 
Vision that used synthetic voicegrams delivered an 
average word recognition accuracy of 64.71%. 
Shahamiri further explored the generation of 
synthetic data that was employed in Speech Vision 
with Hu and Phadnis in [50]. They proposed the idea 
of utilizing and adapting speech generation systems 
that are designed to narrate normal speech in order to 
generate dysarthric speech. This synthesized 
dysarthric speech can be subsequently used in 
training an ASR system and thus increases the 
recognition accuracy. In addition, and to alleviate the 
limitation of dysarthric speech used to train the 
speech generation system, transfer learning was 
employed. The authors pre-trained the speech 
generation system on normal speech and then adapted 
this knowledge by training the model on dysarthric 
speech. After that, this generation system was used to 
synthesize dysarthric speech to be used in training 
their dysarthric ASR system (Speech Vision). The 
results showed that using synthetic dysarthric speech 
during training has improved the performance of 
ASR systems. 

Liu et al. revealed the latest efforts of the Chinese 
University of Hong Kong (CUHK) to improve the 
performance of dysarthric ASR systems [51]. The 
authors experimented with different novel modeling 
techniques including spectra-temporal perturbation 
for data augmentation, Neural Architectural Search 
(NAS), and model-based speaker adaptation. In 
addition, they employed a cross-domain generation 
of visual features to be used within an Audio-Visual 

Speech Recognition (AVSR) that they developed. 
They found that the proposed speaker adaptation 
techniques were able to model the great variability 
among dysarthric speakers and allowed fast 
adaptation to each dysarthric speaker that can be 
performed using as little as 3.06 seconds of speech. 
The results showed that the combination of the 
proposed techniques yielded an average WER of 
25.21%, which is the lowest WER on the UASpeech 
test set. Moreover, this combination was able to 
reduce the overall WER by an absolute 5.39% over 
the previously proposed CUHK system [37]. The 
proposed AVSR was able to achieve an average WER 
of 15.79% excluding very low intelligible speakers, 
which is close to normal speech recognition WERs. 
The authors obtained similar improvements when 
they utilized these techniques on a Chinese dysarthric 
ASR task using CUDYS dataset. 

Deng et al. proposed a Bayesian parametric and 
neural architectural domain adaptation approach for 
dysarthric ASR instead of using the conventional 
adaptation approach that considers only parameter 
fine-tuning on limited data [39]. Both the standard 
parameters and hyper parameters of a lattice-free 
MMI factored TDNN system were trained on large 
quantities of normal speech obtained from two 
corpora: English LibriSpeech and Cantonese 
SpeechOcean. Then, the system was domain adapted 
to CUDYS dysarthric speech corpus. The results 
showed an absolute reduction in recognition error 
rate by 1.82% compared to the baseline systems that 
perform model parameter fine-tuning only. Also, 
continuous performance improvements were gained 
when the authors performed data augmentation and 
LHUC based speaker adaptation. The experimental 
results revealed that Bayesian adaptation was able to 
lessen the risk of overfitting that might occur when 
directly fine-tuning systems with large numbers of 
parameters. Moreover, they found that architectural 
adaptation was able to improve the generalization of 
systems with the use of parameter adaptation only. 

A sequential contrastive learning framework was 
proposed by Wu et al. [7]. They explored several data 
augmentation methods to alleviate data scarcity as 
well as form two branches of the framework and 
support contrastive learning. These methods include 
time warping, frequency masking, and time masking. 
The authors utilized transfer learning as the model 
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was pre-trained on non-dysarthric speech from 
LibriSpeech and then it was fine-tuned on dysarthric 
speech from TORGO. The results demonstrated the 
effectiveness of the framework as it provided results 
better than or comparable to the supervised baseline. 
Moreover, combining data augmentation strategies 
provided better results than using a single one. 

A recent study by Revathi et al. analyzed speech 
enhancement techniques and the use of multiple 
features in a cluster-based dysarthric ASR system 
[52]. The authors developed an isolated digit 
recognition system for dysarthric speech and 
presented a comparative analysis of dysarthric ASR 
using six features, seven enhancement techniques, 
and a Vector Quantization (VQ) based modeling 
technique. This was evaluated using test utterances of 
two female speakers with an intelligibility level of 
6% and 95%. They performed two types of 
assessments: an experimental evaluation and a 
subjective assessment to test the utterances of 
dysarthric speakers. Regarding the dysarthric speaker 
with a 6% intelligibility level, the experimental 
evaluation using the automated system integrating all 
the features and speech enhancement techniques 
outperformed the subjective assessment with a 4% 
WER. As for the dysarthric speaker with a 95% 
intelligibility level, both experimental evaluation and 
manual recognition yielded the same results; 0% 
WER for the subjective assessment and experimental 
evaluation using a system that integrates GFE 
features and speech enhancement techniques.  

Yue et al. investigated combining acoustic 
features with articulatory features to improve 
dysarthric ASR [53]. They proposed multi-stream 
architecture where the streams of acoustic and 
articulatory features are first pre-processed and then 
fused using different schemes to find the optimal 
fusion level and training dynamics. After fusion and 
before the output layer, fused streams are post-
processed. Data augmentation was employed to 
augment the training data using speed perturbation. 

In addition, monophone regularization was used as an 
auxiliary task for optimization. The results showed 
that fusing articulatory and acoustic features using the 
optimal fusion scheme yielded a substantial reduction 
in absolute WER by up to 4.6% where the best 
improvement was for severe dysarthric speakers.  

Mariya Celin et. al. incorporated transfer learning 
with data augmentation to support dysarthric ASR 
[54]. First, the authors trained a speaker-independent 
model on normal speech and performed transfer 
learning to three speaker-dependent ASR systems to 
compare various speech data augmentation 
techniques. The first was trained using speed and 
volume perturbed speech data. The second was 
trained using speech data augmented through Virtual 
Microphone array synthesis and Multi-Resolution 
Feature Extraction (VM-MRFE) which was 
previously used by the authors in [12]. The third was 
trained on speech data augmented using both 
techniques. All these systems were trained on 
UAspeech, TORGO, and SSN-Tamil dysarthric 
speech corpus developed by the authors. Moreover, 
they considered both continuous speech and isolated 
words for comparison purposes. The results showed 
that for isolated words, the combination of data 
augmentation techniques outperformed the stand-
alone augmentation techniques with an average WER 
of 32.97% and 63.38% for low and very low 
intelligible speakers, respectively. This provided a 
reduction in WER in comparison to the latest results 
in the literature. As for continuous speech, the use of 
VM-MRFE augmentation technique provided a 
better reduction in WER compared to the use of speed 
and volume perturbation technique or the 
combination of both techniques. The average WER 
was 35.89%. The results also revealed that the 
appropriate augmentation technique depends on the 
nature of the utterance and whether it is isolated or 
continuous. Table V summarizes the reviewed papers 
in hybrid approach, the techniques used, and error 
rates. 

TABLE V.  SUMMARY OF HYBRID APPROACH PAPERS 

Ref. Year Method Techniques Datasets Error Rate 

[43] 2020 
Adaptation (TL) + Features 

(domain invariant features) 

-CNN (baseline model) 

-DANN model - MTL model 
UASpeech 

Lowest avg. WER 25.09 % ** 

(DANN trained on labelled dysarthric 
& control speech) 

[44] 2020 
Data augmentation (speed 
perturbation & data combination 

-E2E-ASR system (acoustic model 

based on Speech Transformer) 

- ASAT system 

-LibriSpeech (normal 
speech) 

Lowest PER 29.84% (with data 

augmentation - TS2-DA (TS2 + 

Teacher:S2)) 
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(normal & dysarthric)) + 
Adaptation (TL) 

-TORGO (normal 
+dysarthric) 

[45] 2020 

Data augmentation (speed 

perturbation) + Adaptation (TL)+ 

Features (MFCC, fMLLR) 

-Light Gated Recurrent Units 

(LiGRU) acoustic model 

-Multi-task optimization techniques 
(Joint optimization + Monophone 

regularization) 

- AE-BN (feature extractor) 

-LibriSpeech (normal) 
-TORGO (dysarthric) 

Lowest avg. WER 52.37% 
(fMLLR+BN20 + mono) 

[46] 2021 

Data augmentation (speed 

perturbation) + Speaker 
adaptation (LHUC SAT) + 

Features 

-Hybrid DNN acoustic model 

-VAEVE (to encode variability 
information) 

-LHUC (speaker adaptation technique) 

UASpeech (training: 

normal + dysarthric, 

testing: dysarthric) 

Lowest overall WER 25.7% (DNN + 
Data Aug. + LHUC SAT + VAEVE) 

[47] 2021 

Data augmentation (multi-

condition training using 
corruption with noise data) + 

Features (MFCC, PPG)  

CNN-PPG Speech Command 
Recognition (SCR) System 

3 Mandarin speakers 
(19 speech commands) 

Lowest avg. WER 6.51% 

(personalized SCR system - (CNN–

PPG)) ** 

[48] 2021 

Adaptation (TL) + Data 

augmentation (frequency masking 
& time masking) 

-RNN-T architecture  

-SpecAugment (data augmentation 
technique) 

Recordings of 432 

speakers - English 

Median WER 4.6% (personalized 

models) 

[49] 2021 

Data augmentation (Visual data 
augmentation & synthesis of 

dysarthric data) + Adaptation 

(TL) 

-Spatial Convolutional Neural 

Network (S-CNN) 

- Deep convolutional text-to-speech 
(DC-TTS) generation system 

-Speech Vision ASR system 

UASpeech 
Absolute avg. WER 35.29% (Speech 

Vision: synthetic data included) ** 

[50] 2021 

Data augmentation (synthesis of 

dysarthric speech) + Adaptation 

(TL) 

-DC-TTS (generation system) 
-Speech Vision ASR system 

-TORGO 
-UASpeech 

Lowest avg. WER 35.69% (Speech 
Vision: synthetic data included) * ** 

[51] 2021 

Data augmentation (spectra-
temporal perturbation) + 

Adaptation (model-based speaker 

adaptation - auxiliary speaker 
embedding & model-based 

adaptation (LHUC, HUB & PAct) 

+ Features (cross-domain 
generation of visual features) 

-Manually designed DNN system 

(baseline system architecture) 
-Neural architecture search (NAS) 

auto-configured DNN system 

-UASpeech (English 

dysarthric) 

-CUDYS dataset 

(Cantonese Dysarthric 
Speech)  

Lowest avg. WER 25.21% for 

English (NAS DNN+ Data aug. 

+LHUC SAT+AV fusion) 

Lowest avg. CER 11.2% for 
Cantonese (system no. 6) 

[39] 2021 

Data augmentation (speed 

perturbation) + Adaptation (TL - 
neural domain adaptation - 

architectural and parametric 

adaptation of Bayesian TDNNs - 
LHUC speaker adaptation) 

-LF-MMI TDNNs (baseline systems) 

-A Bayesian differentiable 

architectural search (DARTS) super-
network 

-LHUC (speaker adaptation technique) 

-LibriSpeech (normal 

English) 

-SpeechOcean (normal 
Cantonese) 

-DementiaBank 

(elderly speech) 
-CUDYS (Cantonese 

dysarthric)  

English: Lowest WER 30.83% 
(Bayesian domain parametric & 

architectural adaptation+data 

augmentation+LHUC) 
Cantonese: Lowest CER 9.41% 

(Bayesian domain parametric & 

architectural adaptation+LHUC) 

[7] 2021 

Data augmentation (time warping, 

frequency masking & time 

masking) + Adaptation (TL) 

CNN with pyramid CNN subsets 

-LibriSpeech (normal 

for pre-training) 
-TORGO (dysarthric 

for fine-tuning) 

Lowest avg. WER 15.88% (proposed 
model with fine-tuning)* 

[52] 2022 

Enhancement (mean squared error 

(MSE) log spectral amplitude 
extractor, MSE spectral amplitude 

extractor, wavelet denoising, 

probabilistic geometric approach, 
geometric approach, phase 

spectrum compensation) + 

Features (GFEERB, GFEMEL, 
GFEBARK,  MGDFC, DCSTC & 

DOSTC) 

Isolated digit recognition system 

(Modeling technique: Vector 
quantization (VQ) based clustering 

technique) 

TORGO (number of 
isolated digits - 10) 

6% intelligibility speaker: Lowest 
avg. WER 4% (integration of all 

features +enhancement techniques-

isolated digit recognition) 
95% intelligibility speaker: Lowest 

avg. WER 0% (integration of GFE 

features+ enhancement techniques- 
isolated digit recognition) 
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[53] 2022 

Data augmentation (speed 

perturbation) + Features (acoustic 

(MFCC) & articulatory (lip)) 

-Acoustic model (CNN- multi-layer 

perceptrons (MLP) and LiGRU) 

-Monophone regularization (auxiliary 

task for optimization) 

TORGO (dysarthric 

and typical speech)  

Lowest avg. WER 43.2% 

(MFCC+lip with concat-2 fusion 

level) 

[54] 2023 

Data augmentation (VM-MRFE - 

speed & volume perturbation) + 
Adaptation (TL) 

Transfer learning with DNN 

architecture (TDNN-F incorporating 
CNNs) 

-TORGO 
-UASpeech 

-SSN-Tamil corpus by 

authors 

Lowest avg. WER: 

UASpeech 35.86% * (VM-RFE 

+speed & volume perturbation - 
isolated words) 

TORGO 41.99% * (VM-MRFE -

isolated words) 
SSN-Tamil 35.89% * (VM-MRFE - 

isolated words & sentences) 

         *Indicates that the average WER was not directly provided in the paper and therefore it was calculated using the formula: Avg = sum of error rates reported/number of error rates. 

**indicates that the results were given in terms of recognition accuracy, and it was converted to error rate for comparison reans using the formula: Error rate = 100-accuracy. 

III. DATASETS 

One of the key requirements to develop and 
improve dysarthric speech recognition systems is the 
availability of dysarthric speech datasets. These 

datasets can be helpful in training the recognition 
system and in evaluating the system’s performance. 
Table VI shows the available datasets and their 
languages. 

TABLE VI.  DYSARTHRIC DATASETS 

Dataset / Ref. Contents No. of speakers Dysarthria type/cause Content type Language 

UASpeech [55] 

765 isolated words per speaker 

(uncommon words, digits, 

computer commands, radio 
alphabet & common words)  

15 dysarthric & 13 
age-matched non-

dysarthric 

spastic dysarthria (Cerebral Palsy 

(CP)) 
Audiovisual recordings 

American 

English 

TORGO [56] 

Single words or restricted 
sentences & unrestricted 

sentences (description of the 

content of some photos) 

7 non-dysarthric 

& 8 dysarthric 

spastic, athetoid, or ataxic 

(cerebral palsy) & amyotrophic 
lateral sclerosis (ALS) 

Audiovisual recordings 

& electromagnetic 

articulography (aligned 
acoustic & articulatory 

recordings) 

American 

English 

Nemours [57] 
814 short nonsense sentences & 

74 sentences 

11 dysarthric 

males   
- Audio recordings 

American 

English 

homeService [58] command words 
5 dysarthric 

speakers 
severe dysarthric speakers Audio recordings 

British 

English 

EasyCall [59] 
dysarthric speech command 

dataset 

24 non-dysarthric 

& 31 dysarthric 

Parkinson’s Disease (PD), ALS 
Huntington’s Disease, peripheral 

neuropathy, myopathic, 

myasthenic lesions 

Audio recordings Italian 

SSNCE [60] 

365 utterances per speaker 
(single words & sentences 

including combination of 

common & uncommon phrases) 

20 dysarthric & 10 

non-dysarthric 
Cerebral Palsy (CP) Audio recordings Tamil 

PC-GITA [61] 21 isolated words per speaker 
50 dysarthric & 50 
non-dysarthric  

PD with dysarthria Audio recordings Spanish 

Dutch dysarthric 
speech database [62] 

Isolated words & sentences 
16 dysarthric 
speakers 

PD, traumatic brain injuries (TBI) 
& cerebrovascular accident  

Audio recordings 
Dutch 
Netherlands 

Korean dysarthric 

QoLT corpus [63] 

isolated words & restricted 

sentences 

10 non-dysarthric 

& 70 dysarthric 
Cerebral Palsy (CP) Audio recordings Korean 

IDEA [64] 211 isolated common words 45 dysarthric 

ASL, Ataxia (ATX), Huntington’s 

Chorea (HC), Multiple Sclerosis 
(MS),Myotonic Dystrophy,TBI, 

(MD),Neuropathy, PD, Stroke 

Audio recordings Italian 
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AllSpeak [65]  23 commands 
8 non-dysarthric 
& 8 dysarthric 

Amyotrophic Sclerosis Lateral 
(ALS) 

Audio recordings Italian 

Whitaker [66]  
19275 isolated-word utterances 

- 81 isolated words 

6 dysarthric & 1 

non-dysarthric 
Cerebral Palsy (CP) Audio recordings 

American 

English 

CCM [67] 
words, sentences, & 
spontaneous speech 

860 dysarthric & 
80 non-dysarthric 

PD, paralytic dysarthria, ALS, 
MS, ATX, Friedreich disease 

Audio & some electro-

glottographic 

recordings 

French 

The Aix Neurology-
Hospital corpus 

(ANH)a  [67] 

vowels, sentences, & 

spontaneous speech 

990 dysarthric & 

160 non-dysarthric 
PD & Parkinsonian syndromes 

Audio & aerodynamic 

recordings 
French 

The TYPALOC 
Corpus [68] 

Sentences & spontaneous 

speech (natural continuous 

speech) 

28 dysarthric & 12 
non-dysarthric 

Extrapyramidal system with PD, 

Pyramidal system with ALS & 
Cerebellar system with Cerebellar 

ataxia (CA). 

Audio recordings French 

The MSDM 

Database [69] 

Syllables, characters, words, 

sentences, & spontaneous 
speech  

25 dysarthric & 25 

non-dysarthric 
subacute stroke patients 

Audio-visual 

recordings 

Mandarin 

Chinese 

CUDYS [70] 

61 single words, 23 short 

sentences, passage, 

conversation & articulatory 
tasks 

11 dysarthric & 5 

non-dysarthric 

cerebellar degeneration (spino-

cerebellar ataxia (SCA)) 

Audio & video 

recordings 
Cantonese 

Copas [71] utterances & words  
182 dysarthric & 
122 non-dysarthric 

- Audio recordings 
Dutch 
Flemish 

Italian dataset using 

CapisciAMe app 

[72] 

isolated words (commands) 
156 dysarthric 
speakers 

neuromotor disabilities Audio recordings Italian 

a. Also Known as AHN (Aix Hospital Neurology) corpus. 

 

IV. CONCLUSION AND FUTURE WORK 

 

This survey discussed the latest efforts of 
dysarthric speech recognition and the different 
approaches and techniques that can be used to 
increase the recognition accuracy and support 
dysarthric speakers. It can be noticed that in most 
cases combining multiple approaches or systems 
yielded better results and lower error rates. Moreover, 
the availability of dysarthric speech datasets can 
boost the experiments carried out to support a certain 
language. As it can be observed, most of the research 
utilized English dysarthric datasets either for training 
and testing if the system is developed for English 
dysarthric speakers or to pre-train the model and then 
fine-tune it using the targeted language of ASR 
system. This is because of the availability of these 
datasets and the quantity of these recordings. Future 
work may consider developing datasets for low 
resource languages or languages that have none. 
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عسر النطق هو اضطراب لفظي عصبي حركي ينتج عن إعاقة جسدية ويحد من وضوح الكلام. يمكن لذوي صعوبات النطق  المستلخص:

على    الدراساتتستعرض هذه الورقة أحدث الاستفادة من أنظمة التعرف على الكلام لمساعدتهم على التواصل مع الآخرين بشكل أفضل. 

صنفت  . 2023وحتى  2018والتي أجريت خلال السنوات الخمس الماضية وتحديداً من عام  أنظمة التعرف على كلام ذوي صعوبات النطق

الكلام زيادة البيانات وتحسين ج ه  الن  هذه . تتضمن التعرف على كلام ذوي صعوبات النطقهذه الأعمال بناءً على النهج المتبع لتحسين نظام 

 تخدام هجين من عدة طرق. عسر والعمل على خصائص الكلام والصوت وتكييف النظم واسال

 

 الكلام اعتلالقائي على كلام ذوي صعوبات النطق، لعسر النطق، التعرف التلقائي على الكلام، التعرف الت  —الكلمات المفتاحية

 
 

 


