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Abstract— Machine learning, particularly deep learning, has revolutionized a number of fields, including medical diagnostics. In 

this study, federated learning FL is employed to address privacy concerns and data access limitations inherent in medical imaging. A 

simulated FL environment was used to investigate the performance of five pre-trained neural network models: DENSENET121, 

RESNET18, VGG-NET11, GOOGLENET and INCEPTION-V3. It emphasizes the optimization of training duration as well as the 

application of lossy image compression techniques such as JPEG in order to improve communication efficiency. We conducted a 

comparative analysis of the models’ performance before and after image compression by evaluating the Area Under the Receiver 

Operating Characteristic Curve and the training time. According to the results, image compression can maintain or improve model 

performance while affecting training time, underscoring the trade-offs between model accuracy and computational efficiency. 

Keywords—federated learning, CheXpert, Simulated Environment, JPEG Algorithm.  

 

 

 

 

I. INTRODUCTION  

Advancements in machine learning and deep 

learning DL over the past decade have 

substantially impacted various sectors, 

particularly medical applications. These 

technologies have revolutionized the medical field 

by improving disease detection and diagnosis 

through medical imaging, assisting radiologists in 

the early and accurate identification of conditions 

such as pneumonia and other lung diseases, and 

ultimately expediting patient recovery [1] [2] [3]. 

   A key evolution in DL is the advent of pre-

trained convolutional neural networks CNNs, 

known as transfer learning TL. This approach 

utilizes networks, such as AlexNet, ResNet18, and 

DenseNet, which are trained on extensive 

datasets, such as ImageNet. In TL, a model 

trained for a specific task is repurposed for a 

different DL task using the same weights [4][5] 

[6]. However, the application of DL in critical 

areas, such as healthcare, where accuracy is 

paramount, presents challenges. Deep neural 

networks in the medical domain require vast 

image datasets, which are difficult to acquire due 

to patient privacy and data confidentiality 

concerns [7].  

Federated learning FL offers a solution to these 

challenges by enabling access to data from various 

devices while preserving data ownership. FL 

enables collaborative model training without 

sharing individual device data, ensuring privacy 

[8]. In FL, numerous communication rounds 
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occur, where each round involves data processing 

on multiple FL clients, such as smartphones and 

computers. These clients participate in training 

and then transmit their results to a central server, 

forming a global model. In a simulated FL 

environment, a single dataset is divided into 

multiple subsets, each representing a client. 

Training occurs on these subsets in multiple 

rounds, and the results are transmitted to a central 

server to update the global model [9]. 

 

Studies, such as [10], have explored FL in 

medical image classification, emphasizing privacy 

and addressing data constraints. Similarly, 

research by [11] explored the use of FL with 

different numbers of clients and training epochs, 

using models such as ResNet50 and DenseNet121 

on chest X-ray datasets, achieving accuracy rates 

up to 92%.  

Our research contributes to this field by 

investigating compression techniques within FL 

on X-ray images. Other studies have focused on 

neural network compression (NNC) by MPEG 

(ISO)[12] and the Parameter Compression Method 

[13]. These techniques aim to compress neural 

network models and enhance data privacy, 

respectively. In contrast, our study introduces 

lossy JPEG image compression to optimize 

medical X-ray image classification. This method 

has proven effective in CNN model training [14] 

and plays a key role in minimizing 

communication overhead in FL.  

This study adopts a novel approach by 

implementing JPEG lossy image compression 

within a simulated FL environment. Our objective 

is to reduce communication costs during data 

transmission by applying the compression 

algorithm to X-ray dataset images. We have 

implemented and analyzed various pre-trained 

CNN models with JPEG compression in this 

simulated FL setting, training five different 

models (DenseNet121, ResNet18, VGG-Net11, 

GoogLeNet, and Inception-V3) on X-ray image 

datasets. Our research evaluates their performance 

before and after applying JPEG compression, 

marking a significant advancement in FL, 

especially in medical imaging, by optimizing 

model performance while addressing efficiency 

and privacy challenges. In our research paper, we 

systematically explore the application of federated 

learning to the field of medical imaging, 

particularly X-ray image classification. This 

introductory section has been used to set the stage 

for the study by highlighting the advancements 

and significance of machine learning in medical 

diagnostics. The remainder of this paper is 

structured into additional sections as follows. The 

Literature Review section is subdivided into two 

subsections. The Background sub-section explores 

the concept of federated learning, its challenges, 

and types, and is followed by the Related Work 

sub-section, which reviews current methodologies 

in the field. The Materials section describes the 

CheXpert dataset used for model training, while 

the section, Experimental Setup, outlines the 

procedural framework of our study, including the 

training of pre-trained models on both original and 

compressed images. The Results section presents 

the findings of our model evaluations, and the 

following section, Discussion, interprets these 

results in the context of federated learning 

frameworks. The paper culminates in a final 

section, Conclusion, that encapsulates the study’s 

findings and its implications for future medical 

imaging practices. All sources are cited in the 

References section, and detailed results are 

relegated to the Appendix. 

 

 

II. LITERATURE REVIEW 

This literature review delves into two critical 

areas: the foundational concepts and challenges of 

FL (addressed in the Background section), and 

pivotal advancements and applications (detailed in 

the Related Work section). This review serves to 

frame the current landscape of FL, setting the 

stage for our study’s focus on medical image 

analysis. 

A. BACKGROUND 

 

This section delves into the intricacies of FL, a 

collaborative machine-learning paradigm 

designed to maintain data privacy across diverse 

applications. It explores FL’s evolution, 

challenges, and its integration with differential 

privacy, highlighting its significance in the realm 

of secure, decentralized data processing. 
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1) Federated Learning: 

FL is a collaborative machine learning approach 

that enables the use of multiple devices for 

training a shared model while ensuring that the 

privacy of each data source is maintained. It was 

introduced by Google in 2017 to enhance voice 

recognition while preserving user privacy [15][8]. 

The process involves a central server distributing 

an initial model to local devices, which then train 

the model using their data. The locally trained 

models are aggregated into a new model on one 

central server. FL has been applied in healthcare, 

finance, and telecommunications, where data 

privacy is crucial [16] [17].  

 

2) Challenges In Federated Learning: 

FL is a promising approach in machine learning; 

however, it faces several challenges. One of the 

most common challenges is non-independent and 

identically distributed data (non-IID), where 

different devices have varying data distributions, 

leading to performance degradation of the global 

model, and causing a mismatch between the local 

and global data [18]. Communication efficiency is 

another significant challenge, particularly when 

FL is applied in cases with a large number of 

devices with limited communication resources, 

resulting in issues related to communication 

efficiency [15]. Furthermore, the devices within 

the FL framework may differ in computational 

capabilities, battery life, and data storage, posing 

challenges in designing algorithms that can 

accommodate this heterogeneity [17]. 

Personalized data privacy and Personalized data 

privacy and security are of paramount importance 

in FL, necessitating appropriate encryption 

techniques and mechanisms to ensure privacy 

preservation and security [19]. Finally, FL models 

can be vulnerable to attacks by malicious nodes 

that deploy poisoned updates or leakage-prone 

updates, which can lead to the entire system 

malfunctioning [20]. These challenges must be 

thoroughly considered and carefully addressed to 

effectively implement federated learning systems 

in real-world applications. 

3) Differential Privacy in Federated Learning: 

In the realm of FL, safeguarding data privacy is a 

foundational concept, as it ensures collaborative 

model training without compromising sensitive 

information. In [7], the authors explore 

differentially private FL for protecting data 

privacy in the binary classification of medical 

image (chest X-ray) data. They compare two 

neural network architectures and observe that non-

private models achieve high accuracy but are 

susceptible to privacy attacks through image 

reconstruction. They mitigate this risk by 

integrating a privacy mechanism based on Renyi 

differential´ privacy with a Gaussian noise 

mechanism during local model training. This 

approach helps enhance privacy protection while 

maintaining reasonable classification accuracy. In 

[21], the authors introduce a privacy-preserving 

solution for collaborative machine learning among 

data-owning entities, such as hospitals. Their 

study addresses the challenge of malicious parties 

trying to disrupt the model. The proposed 

approach, distance-based outlier suppression 

(DOS), calculates distances between local model 

updates from different clients, detects outliers 

using copula-based outlier detection (COPOD), 

and uses weighted averages to update the  global 

model. DOS is robust against various poisoning 

attacks, making it suitable for medical imaging 

datasets, such as CheXpert and HAM10000. Table 

1 illustrates the strategies employed to effectively 

mitigate privacy concerns within the context of 

federated learning. Researchers employ a variety 

of datasets to investigate methods that enhance 

privacy. The primary objective is to achieve a 

harmonious equilibrium between safeguarding 

data privacy and maximizing the efficacy of FL, 

thereby providing significant contributions to the 

field of privacy-preserving collaborative machine 

learning. FL can be applied in simulation 

environments to verify model performance and 

functionality [7]. It is also implemented in real-

world settings, including devices, cloud, and IoT 

environments, to improve machine learning 

models while maintaining privacy [16]. FL uses  
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Table I: OVERVIEW OF RECENT STUDIES ON PRIVACY MEASURES IN FL: THIS 

TABLE SUMMARIZES KEY RESEARCH FROM 2021 

 

 

various global model algorithms, including federated 

averaging [8], FedProx [22], federated MDL (model 

and data level) [16], and federated meta learning [23]. 

 

4) Types of federated learning: 

FL has attracted extensive research since its inception, 

leading to various proposed approaches in the 

literature. These approaches may be generally 

categorized into five types and are presented here in 

two groups. 

The first group of approaches addresses methods for 

data sharing between different sources: vertical 

federated learning, horizontal federated learning, and 

federated transfer learning. In a vertical FL approach, 

different entities (such as hospitals) hold different 

features or attributes for the same set of entities (for 

example, patients). This method is used when 

collaborating entities have different types of data 

about the same individuals. For example, multiple 

hospitals may contribute their medical images to 

assist in disease diagnosis. Each entity contributes 

different features to create a more comprehensive 

understanding [24]. 

 

In horizontal FL, different entities have data on 

different individuals, but the types of data are similar. 

For example, multiple banks may have similar types 

of customer data (such as spending habits and account 

balances) but for different sets of customers. In 

horizontal FL, these data are combined in a way that 

avoids revealing individual customer data from each 

bank [24]. 

Federated transfer learning [16] combines the 

principles of TL with FL. TL is a method where a 

model developed for one task is reused as the starting 

point for a model that will be used on a second task. 

The federated transfer learning approach is used to 

improve model performance and reduce the need for 

extensive communication between the participating 

entities. It is particularly useful in scenarios where 

some entities have limited data or when it is necessary 

to enhance the learning process by leveraging pre-

trained models [25]. Each type is suited to different 

scenarios based on the nature of the data available and 

the privacy requirements of the participating entities. 

The second group addresses methods that are based 

on the type of dataset used in federated learning and 

encompasses several applications based on data type. 

 Year Ref. Datasets Privacy Methods 

2022 [21] 
CheXpert 

HAM10000 

Method (DOS) designed to 
enhance the robustness and 

privacy of federated 

learning systems by 

effectively 

identifying and 

suppressing malicious 

behavior 

2022 [7] 
CheXpert 

Mendeley 

They apply 

Differential Privacy to 
various neural network 

architectures in 

federated learning 

for chest X-ray classification, 

assessing the 

trade-off between performance 
and privacy across 

different privacy budgets 

2021 [30] EMNIST 

This work involves adding 
constraints 

related to Differential Privacy 
(DP) to a specific approach 

used in Federated 

Learning (FL) called DP-
SCAFFOLD. 

These constraints are designed 
to enhance the privacy of the 

data used in the FL process 

2021 [31] MNIST CIFAR 

They present 

FEDMD-NFDP 

ensures the privacy 

of the data used in the 
federated 

learning process. It 
incorporates Noise-Free 

Differential Privacy 

(NFDP) mechanisms to 

protect data privacy 
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Structured data, such as tabular data, transaction data, 

sensor data, and log files, are used in federated 

learning on structured data [26]. Image data, 

including photographs, medical images, and satellite 

images, are utilized in federated learning on image 

data [27]. Additionally, text data (for example, from 

emails, chat logs, social media posts, and news 

articles) serve as input for federated learning on text 

data [28]. Lastly, time-series data, such as 

temperature readings or machine vibrations collected 

over time, are employed in federated learning on 

time-series data [29]. There are two types of federated 

learning from the standpoint of data and client 

diversity. The first is homogeneous federated 

learning, where data from multiple devices or users 

within a single group are utilized, and these devices or 

users exhibit similar characteristics or data 

distributions [7].  

 

The second type is heterogeneous federated learning, 

which involves data from multiple devices or users 

from different groups, and these devices or users may 

have varying characteristics or data distributions [30]. 

 

 In summary, in this section, we have discussed 

various types of FL approaches across different 

categories, but our focus in this study is federated 

transfer learning using a homogeneous X-ray image 

data set and a pre-trained CNN. Our objective is to 

train five pre-trained models (DenseNet121, RES-

NET18, Table 1 overview of Recent Studies on 

Privacy Measures in FedVGG-Net11, GoogLeNet, 

and Inception-v3) on an X-ray FL the  table 

summarizes key research from 2021 image dataset in 

a simulated federated learning environment. and 

2022, detailing the datasets used, the privacy 

measures implemented, and their specific applications 

in enhancing data privacy in FL systems. accuracy, 

ensuring data security, and optimizing resource usage 

in distributed learning environment. 

 

 

B. RELATED WORK 

 

This section reviews significant contributions in the 

field of FL, particularly focusing on its application in 

medical image analysis and compression techniques. 

The studies discussed below highlight the progress in 

enhancing model accuracy, ensuring data security, 

and optimizing resource usage in distributed learning 

environments. 

 

1. Enhancing Medical Image Analysis Through 

Federated Learning: 

 

Recent advancements in federated learning applied to 

medical image analysis are notable for their 

innovation and impact on healthcare diagnostics. For 

example, the work discussed in [32] introduces 

FedFBN, a novel FL framework that improves the 

classification of medical images across non-

identically distributed datasets with incomplete labels. 

This framework achieves an AUROC of 0.75 on the 

CheXpert dataset by integrating TL and static batch 

normalization. Similarly, the study in [33] utilizes FL 

and TL to enhance breast cancer classification, 

achieving a remarkable 98% accuracy with a hybrid 

model comprising FeAvg-CNN and MobileNet across 

various datasets. Additionally, [34] explores a 

blockchain-enhanced FL method for training models 

on heterogeneous, multi-class respiratory medical 

datasets, achieving up to 88.10% test accuracy. This 

approach not only secures data privacy and integrity 

but also innovates with a weight manipulation 

technique based on local model test accuracy, 

facilitating secure and transparent collaboration 

among medical institutions. 

 

2. Advanced Model Compression Techniques in 

Federated learning environment 

 

Investigations of model compression within federated 

learning frameworks have addressed the dual 

challenges of heterogeneous settings and privacy 

protection. Researchers in [35] discuss an adaptive in-

parallel pruning-quantization method that 

significantly reduces model sizes and transmission 

times without compromising performance. 

This method employs mutual learning and multi-

teacher knowledge distillation, enhancing efficiency 

in resource-constrained environments. The study 

discussed in [36] details a model compression 

strategy within an over-the-air federated   learning 
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(OTA-FL) framework, employing pruning and 

quantization-aware training to reduce model sizes by 

up to 80%, while maintaining nearly original 

performance under limited bandwidth and strict 

resource constraints. Moreover, introduces FedCGS, a 

framework that integrates conditional generative 

adversarial networks with singular value 

decomposition. This method effectively reduces 

communication loads and minimizes privacy risks, 

tested on the FMNIST and CIFAR10 datasets to 

demonstrate competitive accuracy and superior 

communication efficiency. 

 

3. Addressing Image Compression in Federated 

Learning 

 

 

Despite extensive research in federated learning, the 

application of image compression techniques within 

this context has been largely unexplored. This study 

aims to bridge this gap by applying JPEG 

compression [14] to X-ray images within a federated 

learning framework. In this work, various 

experiments employing pre-trained neural network 

models are conducted to assess the efficacy of image 

compression in enhancing data transmission 

efficiency while maintaining model performance in 

medical diagnostics. 

Table 2 encapsulates key contributions to federated 

learning in medical imaging, where studies in 2023 

[32]-[34] focus on frame works for knowledge 

aggregation, privacy, and accuracy in diagnosis. 

Subsequent 2024 studies [35] -[37] pivot to model 

compression, enhancing efficiency and maintaining 

performance across various datasets. 

Our study introduces JPEG image compression to 

federated learning, targeting X-ray image 

classification on the CheXpert dataset with a 

comprehensive suite of performance metrics. 

 

 

 

 

 

III. METHODOLOGY 

This section outlines our research methodology and 

is subdivided into a Materials section, where we 

describe the data and tools used, and an Experimental 

Setup section, which the procedures and 

configurations for our analyses. This structure ensures 

a clear understanding of how our study was 

conducted. 

A. MATERIALS 

 

This section provides a detailed description of the 

dataset’s structure, usage, and the specific 

preprocessing techniques applied to ensure data 

integrity and accuracy. 

1. Dataset Description 

The CheXpert dataset [38] encompasses a total of 

224,316 radiographic images from 65,240 distinct 

patients. For our study, we utilized 70% of this 

dataset, corresponding to 156,390 X-ray images, for 

training. Additionally, 10% of the dataset, or 22,342 

X-ray images, were designated for testing, while the 

remaining 20%, which included 44,683 images, were 

reserved for validation in all conducted experiments. 

Each radiograph in the dataset has been annotated 

with one or more classifications from a set of 14 

possible categories: “No Finding”, “Enlarged 

Cardiomediastinum”, “Cardiomegaly”, “Lung 

Opacity”, “Lung Lesion”, “Edema”, “Consolidation”, 

“Pneumonia”, “Atelectasis”, “Pneumothorax”, 

“Pleural Effusion”, “Pleural Other”, “Fracture”, and 

“Support Devices”. Our study involves the 

classification of images across all these specified 

labels. 
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Table II. Overview of Federated Learning Contributions in Medical Imaging: Comparative Analysis of Recent Studies Highlighting 

 

Ref. Year Contribution Dataset 
No. Of 

Classes 
Matric Performance 

Compression 

Image 

Algorithms Or 

Compressing 

Model 

algorithms 

[32] 2023 

introduces FedFBN, a federated 

learning framework that enhances the 

aggregation of knowledge from 

distributed non-iid datasets with 

partial labels by using pretrained 

networks and freezing batch 

normalization layers during training. 

Chexpert 

NIH 

MIMIC 

Binary classes 
binary 

cross-entropy loss 
N 

[33] 2023 

integrating transfer learning with 
federated learning to improve breast 

cancer 

classification, achieving enhanced 

privacy with the FeAvg-CNN + 

MobileNet model on diverse datasets. 

Breast Cancer 9 

accuracy, recall, 
F1-score and the 

AUC 
N 

[34] 2023 

introduces a FL mechanism that 
effectively trains and aggregates models 

on multi-class and heterogeneous 
respiratory medical data using 

blockchain technology for enhanced 
privacy and introduces a 

weight manipulation technique based 

on local model test accuracy 

COVID-19 

Pneumonia 
6 

Accuracy 

Precision 

Recall 

F1-scor 

N 

[35] 2024 

introduces an adaptive in-parallel 

pruning-quantization method that 
enhances model compression and 

maintains accuracy in heterogeneous 

federated learning environments. 

Various datasets Not mentined 
accuracy rates 

compression effectiveness 

Model 

Compression 

[36] 2024 

proposes a compression pipeline 
combining pruning and 

quantization-aware training to 
significantly reduce the model size and 
computation requirements in an Over-
the-Air Federated Learning (OTA-FL) 
system while maintaining comparable 

accuracy 

CIFAR Not mentinesd accuracy 
Model 

compression 

[37] 2024 

introduces the FedCGS framework that 

uses conditional GANs and feature 
compression via singular value 

decomposition to enhance privacy and 

communication efficiency in FL. 

FMNIST 

CIFAR10 
10 

Accuracy 

communication efficiency 

Model parameters 

compression 

T
h

is
 p

ap
er

 

2024 

Employing JPEG compression 
algorithms within a simulated federated 

learning environment for the 
classification of X-ray images across 14 

labels. 

CheXpert 14 

Accuracy, recall, 
F1-score and the AUC 

Classification report 

JPEG image 

compression 
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2. Preprocessing 

We utilized a data loader to import the CheXpert 

dataset, which processes the labels and image paths 

from the CSV files provided. The data loader also 

addresses label uncertainty by categorizing labels into 

known pathologies (1), absence of pathologies (0), 

uncertain cases (-1), and unknown cases (”). We 

chose to simplify this by adopting a “U-zeroes  

method”, treating all uncertain cases as an absence 

(0), thereby resolving ambiguities in label 

interpretation. 

B. EXPERIMENTS SETUP 

 

Our research methodology was executed within a 

simulated federated learning framework, utilizing the 

Google Colab Pro+ environment to conduct several 

experiments. 

 

1. Stage one: optimizing the training duration for our 

models 

 

In the process of optimizing the training duration for 

our models, we initially focused on the VGG-Net11 

architecture. Given that training could extend to an 

excessive 20 hours, we experimented with varying the 

number of epochs, rounds, and clients specifically for 

this model. The insights gained from these trials were 

used to inform our approach to other pre-trained 

models. 

The results indicated that an increase in epochs 

adversely affected the AUC accuracy; hence we 

standardized the epoch count to three across all 

models. Since the essence of federated learning 

hinges on utilizing a substantial number of clients, we 

maintained a minimum of five clients per model. 

Interestingly, we observed that a reduction in the 

number of clients could potentially enhance AUC 

accuracy. 

Consequently, we established two primary 

experiments based on our preliminary findings: 

 

• Investigating pre-trained models without 

compression, using five clients and ten rounds. 

• Implementing all pre-trained models with 

JPEG lossy compression, also with five clients 

and ten rounds. 

The outcomes of these experiments formed the basis 

for our analysis. Table 3 substantiates the narrative 

described above, presenting data from the CheXpert 

dataset with various configurations of the VGG-Net11 

model. It shows the relationship between the number 

of clients, rounds, epochs, and the resultant AUC 

scores. 

  

2. Stage two: Training on Original X-ray Images 

 

• Preliminary experiments: 

Our research undertook extensive 

experimentation on a range of pre-compression 

pre-trained models to discern the influence of 

various numbers of rounds and clients on model 

performance. It was observed that a greater 

number of rounds positively correlates with 

AUC accuracy. Consequently, we planned to 

scale the number of rounds up to ten. This 

scaling was constrained by the operational limits 

of Google Colab Pro+, which ceases training at 

the 24-hour mark, leading us to adjust the 

number of rounds accordingly. These 

preliminary experiments, which we refer to as 

“pre-experiments” served as the foundation for 

our more extensive, substantive work. The data 

presented in Table 4 corroborate our findings. 

The experiments were carried out on the 

CheXpert dataset using different pre-trained 

models with a fixed number of clients (five) and 

epochs (three), and the AUC accuracy was 

recorded. The VGG11 model achieved an AUC 

of 0.88, Inception v3 reached 0.79, ResNet18 
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scored 0.83, DenseNet121 obtained 0.80, and 

Google Net recorded 0.78. These results support 

our decision to adjust the number of rounds in our 

next experiments. 

• Primary experiments: 

Our experiments in this section involved training 

five distinct pre-trained neural network 

architectures (DenseNet121, RES-NET18, VGG-

Net11, GoogLeNet, and Inception-v3) on the 

original CheXpert dataset. These models, which 

had been previously trained on the ImageNet 

dataset, were fine-tuned on X-ray images 

distributed across five simulated clients. This setup 

aimed to establish baseline performance metrics for 

each model without any modifications to the 

images.  

 

3. Stage three: Training on Compressed X-ray 

Images: 

In the third stage, we applied a JPEG 

compression algorithm to the X-ray images 

before training the same neural networks. This 

step introduced a quality setting of 60 using the 

Python Imaging Library (Pillow), converting 

each image to grayscale and compressing it 

using the JPEG format. The “optimize = True” 

parameter was also employed to potentially 

further reduce file sizes. This compression 

aimed to assess the impact on the models’ 

performance, facilitating a direct comparison 

with the results from uncompressed images. 

4. Federated Learning Configuration and 

Parameters: 

We consistently configured the federated 

learning environment across both stages using 

the following parameters: a learning rate (“lr”) 

of 0.0001, Adam optimizer betas (“betas”) at 

(0.9, 0.999), epsilon (“eps”) at ‘1e-08‘, and a 

weight decay (“weight decay”) of 0. The 

dataset-specific configurations such as batch 

size (“trBatchSize”), number of classes 

(“nnClassCount”), and maximum epochs 

(“trMaxEpoch”) were also set. Each client 

processed 31278 images over 10 

communication rounds (“com rounds”), 

ensuring comprehensive participation in the 

learning process. 

 

5. Training Procedure and Evaluation: 

 

The training procedure comprised local training 

on client datasets and subsequent global model 

aggregation via federated averaging. This 

process was devoid of the complexities of 

secure data transfer, as the federated learning 

was simulated, and data privacy was 

intrinsically maintained. Performance 

evaluation was implemented using 

“sklearn.metrics” along with the “classification 

report” function to derive key metrics such as 

accuracy, precision, recall, F1-score, and 

AUROC. Despite the constraints of Google 

Colab Pro+, which limits continuous operation 

to 24 hours, we achieved a high accuracy rate 

of 99.95% AUC. The AUC metric was 

particularly chosen for its comprehensive 

ability to measure the model’s discriminative 

power at various threshold levels without being 

affected by class imbalance, offering a singular 

performance measure applicable for 

comparative analysis and essential for real-

world deployment.
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Table III: displays the results of applying the VGG model .

  

 

IV. RESULTS 

 

 In this section, we present the performance 

outcomes of our study, which evaluates the 

effectiveness of five different pre-trained neural 

network models under two distinct conditions: 

before and after the application of image 

compression. The results are divided into two main 

categories, uncompressed and compressed image 

results, to distinctly illustrate the impact of 

compression techniques on model performance and 

training efficiency. This comparison sheds light on 

the trade-offs between accuracy and training 

duration, providing a deeper understanding of the 

influence of image compression on federated 

learning models in the context of medical image 

classification. We discuss these findings with an 

emphasis on the balance between maintaining high 

diagnostic accuracy and optimizing computational 

resources. 

1. Uncompressed Image Results: 

- VGG11: Achieved an AUC of 0.98, with a 

training time of 18 hours. 

Table IV: This table presents the AUC scores for 

various pre-trained models 

 

 

 

 

-Inception v3: Reached an AUC of 0.97, taking the 

same amount of time as VGG11, which is 18 

hours.  

-GoogLeNet: Obtained a lower AUC of 0.93, but 

was significantly faster, requiring only 7 hours. 

  -DenseNet121: Reported an AUC of 0.96 with a 

training time of 15 hours. 

-ResNet18: Matched the highest AUC of 0.98 

among the models and was the quickest, with a 

training time of only 7 hours. 

 

2. Compressed Image Results: 

-VGG11: After compression, the AUC slightly 

increased to 0.99, but the model required more 
time to train, totaling 20 hours. 
 

-Inception v3: Maintained an AUC of 0.97 post-

compression and saw a reduction in training time 

by 3 hours, making it 15 hours. 

 

Dataset  

Pre-

trained 

model 

No. of 

clients 

No. of 

rounds 

No. of 

epochs 
AUC 

CheXpert 
VGG-

Net11 

5 2 10 0.76 

2 2 3 0.90 

5 1 3 0.79 

2 4 3 0.97 

5 10 3 0.98 

Data 

set Pre-trained 

Models 

FL parameter 

AUC 

C
h

eX
p

er
t 

No. of 

clients 

No. of 

rounds 

VGG11 5 2 0.88 

Inception v3 5 2 0.79 

ResNet18 5 2 0.83 

DeneNet121 5 2 0.80 

GoogleNet 5 2 0.78 
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Table V: Comparative Performance of Pre-Trained 

Models on CheXpert Dataset Before and After Applying 

60 % JPEG Compression. 

 

- GoogleNet: Showed no change in AUC, 

remaining at 0.93, with a slight increase in training 

time to 8 hours. 

 

-DenseNet121: Had a slight improvement in AUC 

to 0.97 and an additional hour of training, totaling 

16 hours. 

 

-ResNet18: Sustained its AUC at 0.98 and 

experienced a minor increase in training time to 8 

hours. 

These results provide insights into the trade-offs 

between model accuracy and training efficiency. 

The data suggest that while compression can 

enhance or maintain the discriminative power of 

certain models (with VGG-Net11 showing 

improvement and Inception v3 and DenseNet121 

showing stable performance), it may also lead to 

increased training times for some models. This 

highlights the importance of considering both the 

quality of predictive performance and 

computational resources when deploying federated 

learning models in practice. 

Table 5 provides a comparative analysis of the 

performance of the five pre-trained neural network 

models using the CheXpert dataset within an FL 

setup with 5 clients and 10 rounds. The 

performance of the models is evaluated based on 

the AUC and the time taken (in hours) for the 

models to train before and after image compression 

at a 60% compression ratio. 

Furthermore, we generated classification reports to 

provide detailed performance measures of our 

models; these reports offer insights into accuracy, 

precision, recall, and F1 scores for each class 

within the dataset. These reports were instrumental 

in comparing the models’ performance across the 

two experimental stages (before and after the 

application of image compression) in the context of 

federated learning. For an in-depth examination of 

these performance metrics, comprehensive tables 

and figures have been included in the Appendix. 

V. DISCUSSION 

 

The discussion delves into the implications of these 

findings, considering both the model performance 

and the practical aspects of deploying such models 

in real-world scenarios. Table 6 presents a 

comparison of techniques and results from various 

studies, including ours, to contextualize the 

advancements our approach offers. 

 

A. Impact of Image Compression on Model 

Performance: 

Our study demonstrates that image 

compression at a 60% ratio can variably affect 

the performance of different pretrained models. 
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Notably, VGG-Net11 showed a remarkable 

improvement in AUC from 0.98 to 0.99 after 

compression, suggesting that some models may 

extract more relevant features from compressed 

images. Conversely, GoogLeNet and ResNet18 

maintained their AUC, indicating resilience to 

the loss of information typically associated 

with compression. This highlights the potential 

of certain models to operate efficiently even 

with reduced data quality, an essential 

consideration in bandwidth-limited 

environments. 

 

 

B. Training Efficiency versus Accuracy: 

An intriguing observation from our results is 

the trade-off between training efficiency and 

model accuracy. While ResNet18 and 

GoogLeNet were quick to train, their AUCs 

were lower compared to VGG-Net11 and 

Inception-v3, which took longer. This trade-off 

is crucial in settings where time and 

computational resources are limited. For 

instance, in medical imaging diagnostics, where 

rapid results are particularly important, a 

balance between accuracy and speed is 

paramount. 

C. Federated Learning Context: 

In the context of federated learning, where data 

privacy and decentralized learning are 

prioritized, our results provide a nuanced 

perspective. The variations in training times 

and AUCs post-compression suggest that 

different models may be more suitable for 

different federated learning scenarios. Models 

with shorter training times and relatively high 

accuracy, such as ResNet18, might be 

preferable in time-sensitive settings, while 

those with higher accuracies but longer 

training times could be reserved for scenarios 

where precision is more critical. 

 

D. Implications for Model Selection in Practice: 

The findings from this study underscore the 

importance of model selection based on 

specific use-case requirements. For 

practitioners and researchers, this implies a 

need to weigh the pros and cons of each model 

in relation to the specific constraints and 

objectives of their federated learning setup. 

 

 

E. Limitations and Considerations: 

While our study provides valuable insights, it is 

important to acknowledge its limitations. The 

exclusive use of the CheXpert dataset and a 

fixed compression ratio could potentially limit 

the broader applicability of our results. Future 

research seeking to enhance the robustness and 

generalizability of our findings should 

incorporate a variety of datasets and explore 

different compression ratios. Additionally, our 

experiments were conducted using Google 

Colab Pro+, which imposes a constraint of a 

24-hour runtime limit, potentially affecting the 

extent of our experimental exploration. 

VI. CONCLUSION 

This study’s investigation of the effects of image 

compression on various pre-trained neural network 

models within a federated learning framework, 

using the CheXpert dataset, reveals significant 

variations in model performance. Key findings 

indicate a crucial trade-off between training 

efficiency and accuracy, notably with some 

models, such as VGG-Net11, showing improved 

accuracy post-compression. These insights are vital 

for federated learning applications, especially in 

resource-constrained environments such as 

healthcare. While highlighting the importance of 

tailored model selection, the study also opens 

avenues for future research, particularly in 

extending the analysis to diverse datasets and 

exploring varied compression techniques. 

Ultimately, this research underscores the complex 

balance between efficiency and accuracy that is 
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necessary for effective federated learning 

implementations. 

 

 
Table VI: Performance Comparison of Different Learning 

Techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABBREVIATIONS 

1. DL - Deep Learning 

2. CNN - Convolutional Neural Networks 

3. CNN - Convolutional Neural Networks 

4. TL - Transfer Learning 

5. FL - Federated Learning 

6. JPEG - Joint Photographic Experts Group 

7. AUC - Area Under the Curve 

8. Non-IID - Non-Independent and Identically 

Distributed 

9. DOS - Distance-based Outlier Suppression 

10. COPOD - Copula-based Outlier Detection 

11. FL - Federated Learning 

12. DP - Differential Privacy 

13. NFDP - Noise-Free Differential Privacy 

14. ISO - International Organization for 

Standardization 

15. AUROC - Area Under the Receiver Operating 

Characteristic Curve 

 

 

 

 

Ref. Techniques Results 

[3] DL 97% 

[39] TL 97% 

[40] DL 96% 

[7] FL 94% 

This paper FL 99.95% 
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APPENDIX 

 

This Appendix contains supplementary materials 

supporting our research, including detailed 

Tables that provide quantitative data and Figures 

that visually represent findings, facilitating 

deeper insights into our study’s outcomes. 

•Tables from 7 to 16 comprehensive classification performance Analysis of VGG11, Inception, DenseNet, and ResNet18 Models on the CheXpert Dataset in a Federated Learning Setup: Detailed metrics before and after JPEG compression across various chest pathologies, demonstrating diagnostic accuracy and robustness with 

AUC, precision, recall, and F1-score evaluations 

for each class. 

•Figures from 1 to 5 : represent ten heat maps which provide a visual comparison of the performance metrics AUROC, Precision, Recall, and F1-Score for VGG11, ResNet, DenseNet, GoogleNet, and Inception-v3 models pre- and post-image compression on the CheXpert dataset. The comparison indicates that while some 

models like ResNet and VGG11 maintain robust 

performance after compression, others such as 

GoogleNet and DenseNet display more 

fluctuation across metrics. This variance 

highlights the nuanced effects of image 

compression on different models and 

underscores the need for careful consideration of 

model selection in clinical settings where image 

compression is utilized. 
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Table VII: VGG11 Classification Report Result before Compression 

 

 

Data 
Pre Trined 

Model 

Class 

No. 
Class Name 

Classification Report For Each Class 

AUC Precision Recall 
F1-
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Support 
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1 No finding 0.99 0.91 0.85 0.85 2204 

2 
Enlarged 

Cardiomediastinum 
0.99 0.88 0.65 0.75 2337 

3 Cardiomegaly 0.97 0.91 0.84 0.87 3483 

4 Lung Opacity 0.98 0.89 0.91 0.91 11136 

5 Lung Lesion 0.96 0.90 0.69 0.78 1069 

6 Edema 0.98 0.89 0.90 0.90 6387 

7 Consolidation 0.98 0.89 0.80 0.83 4153 

8 Pneumonia 0.97 0.86 0.78 0.81 2439 

9 Atelectasis 0.97 0.84 0.82 0.85 6780 

10 Pneumothorax 0.98 0.88 0.77 0.82 2322 

11 Pleural Effusion 0.98 0.95 0.89 0.92 9782 

12 Pleural Other 0.99 0.91 0.67 0.78 653 

13 Fracture 0.98 0.92 0.62 0.74 966 

14 Support Devices 0.98 0.93 0.93 0.93 11750 

       

 micro avg  0.91 0.86 0.88 65461 

 macro avg  0.90 0.79 0.84 65461 

 weighted avg  0.91 0.87 0.88 65461 

 samples avg  0.86 0.84 0.83 65461 

 AUC mean   0.98  
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Table VIII: VGG11 Classification Report Result after Compression 
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Model 
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No. 
Class Name AUC Precision Recall F1-Score
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1 No finding 0.99 0.92 0.95 0.93 2204 

2 
Enlarged 

Cardiomediastinum 
0.99 0.94 0.88 0.91 2337 

3 Cardiomegaly 0.99 0.91 0.95 0.93 3483 

4 Lung Opacity 0.99 0.96 0.96 0.96 11136 

5 Lung Lesion 0.96 0.90 0.92 0.91 1069 

6 Edema 0.99 0.93 0.96 0.94 6387 

7 Consolidation 0.99 0.93 0.93 0.93 4153 

8 Pneumonia 0.99 0.88 0.96 0.91 2439 

9 Atelectasis 0.99 0.93 0.94 0.94 6780 

10 Pneumothorax 0.99 0.93 0.92 0.92 2322 

11 Pleural Effusion 0.99 0.97 0.96 0.97 9782 

12 Pleural Other 0.99 0.82 0.96 0.89 653 

13 Fracture 0.99 0.94 0.88 0.91 966 

14 Support Devices 0.99 0.98 0.97 0.97 11750 

       

 micro avg  0.94 0.95 0.95 65461 

 macro avg  0.92 0.94 0.93 65461 

 weighted avg  0.94 0.95 0.95 65461 

 samples avg  0.92 0.93 0.92 65461 

AUC 0.99 
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Table IX: Inception Classification Report Result Before Compression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 
Pre Trined 

Model 

Class 

No. 
Class Name AUC Precision Recall 
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1 No finding 0.98 0.86 0.83 0.85 2204 

2 
Enlarged 

Cardiomediastinum 
0.95 0.71 0.74 0.73 2337 

3 Cardiomegaly 0.97 0.88 0.80 0.83 3483 

4 Lung Opacity 0.94 0.89 0.85 0.87 11136 

5 Lung Lesion 0.97 0.84 0.62 0.72 1069 

6 Edema 0.97 0.87 0.89 0.88 6387 

7 Consolidation 0.95 0.75 0.81 0.78 4153 

8 Pneumonia 0.96 0.69 0.80 0.74 2439 

9 Atelectasis 0.95 0.82 0.84 0.83 6780 

10 Pneumothorax 0.98 0.94 0.67 0.78 2322 

11 Pleural Effusion 0.97 0.90 0.93 0.91 9782 

12 Pleural Other 0.98 0.81 0.58 0.67 653 

13 Fracture 0.97 0.79 0.71 0.75 966 

14 Support Devices 0.97 0.94 0.90 0.92 11750 

       

 micro avg  0.86 0.85 0.85 65461 

 macro avg  0.83 0.78 0.78 65461 

 weighted avg  0.86 0.87 0.85 65461 

 samples avg  0.83 0.82 0.81 65461 

 AUC mean   0.97  
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Table X: Inception Classification Report Result After Compression 
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1 No finding 0.98 0.89 0.76 0.82 2204 

2 
Enlarged 

Cardiomediastinum 
0.98 0.80 0.67 0.74 2337 

3 Cardiomegaly 0.96 0.83 0.87 0.85 3483 

4 Lung Opacity 0.98 0.82 0.95 0.88 11136 

5 Lung Lesion 0.97 0.89 0.57 0.70 1069 

6 Edema 0.97 0.90 0.86 0.88 6387 

7 Consolidation 0.95 0.81 0.75 0.78 4153 

8 Pneumonia 0.96 0.80 0.71 0.75 2439 

9 Atelectasis 0.95 0.84 0.83 0.84 6780 

10 Pneumothorax 0.98 0.82 0.82 0.82 2322 

11 Pleural Effusion 0.97 0.90 0.94 0.94 9782 

12 Pleural Other 0.98 0.79 0.63 0.63 653 

13 Fracture 0.97 0.79 0.68 0.68 966 

14 Support Devices 0.97 0.96 0.85 0.85 11750 

       

 micro avg  0.87 0.85 0.86 65461 

 macro avg  0.85 0.78 0.81 65461 

 weighted avg  0.87 0.85 0.86 65461 

 samples avg  0.83 0.82 0.81 65461 

 AUC mean   0.97  
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Table XI: Dense Net Classification Report Result Before Compression 
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1 No finding 0.98 0.81 0.76 0.80 2204 

2 
Enlarged 

Cardiomediastinum 
0.94 0.81 0.67 0.67 2337 

3 Cardiomegaly 0.97 0.90 0.87 0.78 3483 

4 Lung Opacity 0.93 0.84 0.95 0.86 11136 

5 Lung Lesion 0.97 0.74 0.57 0.71 1069 

6 Edema 0.96 0.80 0.86 0.85 6387 

7 Consolidation 0.94 0.81 0.75 0.73 4153 

8 Pneumonia 0.95 0.68 0.71 0.72 2439 

9 Atelectasis 0.93 0.80 0.83 0.80 6780 

10 Pneumothorax 0.97 0.81 0.82 0.80 2322 

11 Pleural Effusion 0.96 0.92 0.94 0.88 9782 

12 Pleural Other 0.97 0.79 0.63 0.59 653 

13 Fracture 0.97 0.87 0.68 0.86 966 

14 Support Devices 0.96 0.94 0.85 0.90 11750 

       

 micro avg  0.85 0.81 0.83 65461 

 macro avg  0.82 0.73 0.77 65461 

 weighted avg  0.85 0.81 0.83 65461 

 samples avg  0.81 0.78 0.78 65461 

 AUC mean   0.96  
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Table XII: Dense Net Classification Report Result Before Compression 
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1 No finding 0.98 0.85 0.73 0.79 2204 

2 
Enlarged 

Cardiomediastinum 
0.94 0.74 0.69 0.71 2337 

3 Cardiomegaly 0.97 0.75 0.86 0.81 3483 

4 Lung Opacity 0.94 0.87 0.87 0.87 11136 

5 Lung Lesion 0.97 0.70 0.71 0.71 1069 

6 Edema 0.96 0.79 0.91 0.84 6387 

7 Consolidation 0.94 0.76 0.74 0.75 4153 

8 Pneumonia 0.95 0.80 0.67 0.73 2439 

9 Atelectasis 0.94 0.91 0.60 0.73 6780 

10 Pneumothorax 0.97 0.85 0.72 0.78 2322 

11 Pleural Effusion 0.96 0.90 0.89 0.90 9782 

12 Pleural Other 0.97 0.77 0.59 0.67 653 

13 Fracture 0.97 0.74 0.68 0.71 966 

14 Support Devices 0.96 0.90 0.92 0.91 11750 

       

 micro avg  0.85 0.82 0.83 65461 

 macro avg  0.81 0.76 0.78 65461 

 weighted avg  0.85 0.82 0.83 65461 

 samples avg  0.81 0.80 0.79 65461 

 AUC mean   0.96  
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Table XIII: ResNet18 Classification Report Result before Compression 
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1 No finding 0.99 0.84 0.91 0.87 2204 

2 
Enlarged 

Cardiomediastinum 
0.98 0.87 0.80 0.83 2337 

3 Cardiomegaly 0.99 0.97 0.78 0.86 3483 

4 Lung Opacity 0.97 0.93 0.88 0.91 11136 

5 Lung Lesion 0.99 0.95 0.72 0.82 1069 

6 Edema 0.98 0.94 0.87 0.91 6387 

7 Consolidation 0.97 0.85 0.84 0.84 4153 

8 Pneumonia 0.98 0.85 0.86 0.85 2439 

9 Atelectasis 0.97 0.90 0.86 0.88 6780 

10 Pneumothorax 0.99 0.94 0.84 0.89 2322 

11 Pleural Effusion 0.98 0.97 0.87 0.92 9782 

12 Pleural Other 0.99 0.87 0.81 0.84 653 

13 Fracture 0.99 0.74 0.89 0.81 966 

14 Support Devices 0.98 0.94 0.94 0.94 11750 

       

 micro avg  0.87 0.90 0.90 65461 

 macro avg  0.85 0.87 0.87 65461 

 weighted avg  0.87 0.90 0.90 65461 

 samples avg  0.85 0.85 0.85 65461 

 AUC mean   0.98  
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Table XIV: ResNet18 Classification Report Result AFTER Compression 
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1 No finding 0.99 0.73 0.96 0.96 2204 

2 
Enlarged 

Cardiomediastinum 
0.98 0.89 0.77 0.77 2337 

3 Cardiomegaly 0.99 0.96 0.78 0.78 3483 

4 Lung Opacity 0.97 0.97 0.79 0.79 11136 

5 Lung Lesion 0.99 0.88 0.75 0.75 1069 

6 Edema 0.98 0.97 0.75 0.75 6387 

7 Consolidation 0.97 0.87 0.83 0.83 4153 

8 Pneumonia 0.98 0.90 0.76 0.76 2439 

9 Atelectasis 0.97 0.90 0.85 0.85 6780 

10 Pneumothorax 0.99 0.84 0.90 0.90 2322 

11 Pleural Effusion 0.98 0.95 0.92 0.92 9782 

12 Pleural Other 0.99 0.93 0.72 0.72 653 

13 Fracture 0.99 0.90 0.78 0.78 966 

14 Support Devices 0.98 0.97 0.88 0.88 11750 

       

 micro avg  0.93 0.84 0.88 65461 

 macro avg  0.90 0.82 0.85 65461 

 weighted avg  0.93 0.84 0.88 65461 

 samples avg  0.89 0.82 0.84 65461 

 AUC mean   0.98  
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Table XV: GoogLeNet Classification Report Result before Compression 
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1 No finding 0.97 0.90 0.60 0.72 2204 

2 
Enlarged 

Cardiomediastinum 
0.89 0.68 0.49 0.57 2337 

3 Cardiomegaly 0.95 0.74 0.78 0.76 3483 

4 Lung Opacity 0.89 0.82 0.80 0.81 11136 

5 Lung Lesion 0.93 0.67 0.52 0.59 1069 

6 Edema 0.94 0.91 0.62 0.74 6387 

7 Consolidation 0.89 0.45 0.86 0.59 4153 

8 Pneumonia 0.92 0.68 0.57 0.62 2439 

9 Atelectasis 0.89 0.67 0.80 0.73 6780 

10 Pneumothorax 0.95 0.72 0.75 0.73 2322 

11 Pleural Effusion 0.96 0.84 0.93 0.88 9782 

12 Pleural Other 0.95 0.61 0.55 0.58 653 

13 Fracture 0.94 0.56 0.65 0.60 966 

14 Support Devices 0.95 0.93 0.86 0.89 11750 

       

 micro avg  0.76 0.78 0.77 65461 

 macro avg  0.73 0.70 0.70 65461 

 weighted avg  0.79 0.78 0.77 65461 

 samples avg  0.74 0.750.72 65461 

 AUC mean   0.93  
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Table XVI: GoogLeNet Classification Report Result after Compression 
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1 No finding 0.97 0.91 0.60 0.72 2204 

2 
Enlarged 

Cardiomediastinum 
0.89 0.55 0.63 0.59 2337 

3 Cardiomegaly 0.95 0.72 0.79 0.76 3483 

4 Lung Opacity 0.89 0.78 0.86 0.82 11136 

5 Lung Lesion 0.94 0.61 0.59 0.60 1069 

6 Edema 0.95 0.89 0.70 0.78 6387 

7 Consolidation 0.89 0.73 0.54 0.62 4153 

8 Pneumonia 0.92 0.73 0.53 0.61 2439 

9 Atelectasis 0.89 0.79 0.64 0.71 6780 

10 Pneumothorax 0.96 0.70 0.79 0.74 2322 

11 Pleural Effusion 0.95 0.82 0.93 0.87 9782 

12 Pleural Other 0.94 0.46 0.57 0.51 653 

13 Fracture 0.93 0.72 0.45 0.55 966 

14 Support Devices 0.95 0.85 0.94 0.89 11750 

       

 micro avg  0.79 0.78 0.78 65461 

 macro avg  0.73 0.68 0.70 65461 

 weighted avg  0.79 0.78 0.78 65461 

 samples avg  0.75 0.75 0.73 65461 

 AUC mean   0.93  
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Figure 1:VGG Heat-maps Before and After apply the JPEG algorithm compression 
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Figure 2:  ResNet Heat-maps Before and After apply the JPEG algorithm compression 
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Figure 3 : Inception-v3 Heat-maps Before and After apply the JPEG algorithm compression 
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Figure 4: GoogLeNet Heat-maps Before and After apply the JPEG algorithm compression 
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Figure 5: DenceNet Heat-maps Before and After apply the JPEG algorithm compression 
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تحسين التعلم الاتحادي لتصنيف الصور الطبي: دراسة مقارنة للنماذج المدربة مسبقا على 

 صور الأشعة السينية المضغوطة 
 

 3لمياء الرفاعي ، 2 سمر الخريجي،  1,5 أماني طارق جمال،  1,4 سوسن طالع الوادعي

 
كلية الحاسبات وتقنية المعلومات، جامعة الملك عبد العزيز، جدة ، المملكة العربية  الحاسبات،قسم علوم  231

 السعودية
4
 مصر، بنها، جامعة  قسم الهندسة الكهربائية كلية الهندسة بشبرا  

 

Salwadaie@stu.kau.edu.sa, Atjamal@kau.edu.sa, Salkhuraiji@kau.edu.sa, 
Lamia.alrefaai@feng.bu.edu.eg 

 
 

حدث ظهور التعلم الآلي، وخاصة التعلم العميق، ثورة في العديد من المجالات، بما في ذلك التشخيص الطبي. تستتت ه هتت     -  المستخخص 

الاتحادي أو التعلم التعاوني لمعالجة مختتاوا الخصوصتتية و يتتود الوصتتوب إلتت  البيانتتات المتوصتتلة فتتي التصتتوي   التعلم الدراسة إمكانات

و  VGGNET11و  RESNET18وDENSENET121 نستكشتتأ أداخ خمستتة نمتتاذك للشتتبكات العصتتبية المدربتتة مستتب  ا .الطبتتي

GOOGLENET    وINCEPTION_V3 ،عل  مجموعة بيانات CheXpert  .ضمن بيئة محاكاة لتعلم الاتحتتادي او التتتعلم التعتتاوني

تشتتتمه  .جتتولات الاتصتتاب  للحصوب علتت  الكءتتاخة والستت عة أث تتاخ  JPEGالبحث عل  تحسين مدة التدريب وتطبيق ض ط الصور    ويؤكد

. تشتتي  ال تتتالى إلتت   وت ييم الم ط ة الوا عة تحت الم ح   وت دي  و ت التتتدريب م هجيت ا عل  تحليه م ارن لأداخ ال ماذك  به وبعد الض ط

ا عل  و ت التدريب، مما يؤكد المءاضتتلة بتتين د تتة ال متتوذك   أن ض ط الصور يمكن أن يحافظ عل  أداخ ال موذك أو يحس ه بي ما يؤث  أيض 

 والكءاخة الحسابية.

 ، بيئة المحاكاة. CheXpertقاعدة البيانات  ،JPEGالتعلم الاتحادي أو التعاوني، خوارزمية الضغط  –ـــ المفخاحية تالكصما
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