https://journals.kau.edu.sa/index.php/CITS/issue/feed Journal of King Abdulaziz University: Computing and Information Technology Sciences 2024-12-30T14:01:54+00:00 Prof. Wadee Alhalabi wsalhalabi@kau.edu.sa Open Journal Systems <h4 style="text-align: center;" data-start="65" data-end="91"><span style="color: #ffffff; background-color: #008000;"><strong data-start="65" data-end="91">Important Announcement</strong></span></h4> <h4 style="text-align: center;" data-start="93" data-end="277"><span style="color: #ffffff; background-color: #008000;">We are pleased to announce the <strong data-start="124" data-end="184">launch of our new submission platform, Editorial Manager</strong>, and we have <strong data-start="198" data-end="276">officially started accepting manuscript submissions through the new system</strong>.</span></h4> <h4 style="text-align: center;" data-start="279" data-end="425"><span style="color: #ffffff; background-color: #008000;">All researchers and contributors are kindly requested to <strong data-start="336" data-end="380">submit their papers via the new platform</strong>, as the previous system is no longer in use.</span></h4> <h4 style="text-align: center;" data-start="427" data-end="536"><span style="color: #ffffff; background-color: #008000;">To access the new platform and submit your manuscript, please visit the following link: </span></h4> <h3 style="text-align: center;" data-start="427" data-end="536"><span style="color: #ffffff; background-color: #008000;"><a style="color: #ffffff; background-color: #008000;" href="https://kauj.researchcommons.org/jcits/">https://kauj.researchcommons.org/jcits/</a></span></h3> <h4 style="text-align: center;" data-start="538" data-end="637"><span style="color: #ffffff; background-color: #008000;">We appreciate your continued cooperation and look forward to receiving your valuable contributions.</span></h4> <p class="" style="text-align: center;" data-start="275" data-end="324"> </p> <p style="direction: ltr;"><span style="text-decoration: underline;"><strong>The Journal of King Abdulaziz University: Computing and Information Technology Sciences</strong> </span>is a peer-reviewed bi-annual journal that published by Faculty of Computing and Information Technology. It is interested in publishing research and scientific studies in different disciplines related to computer science and information technology and their applications.</p> <p>It is the authors’ responsibility to ensure that the manuscript is novel, original and never published in the past in any form any media. The corresponding author should provide a declarative statement that the paper is not an extended or modified version of any conference or journal, this manuscript is 100% original and unpublished. The manuscript has not been published in parts (figures/text/tables) in any conference proceedings or journal in any media or language or format. Similarity should be less than 10%.</p> https://journals.kau.edu.sa/index.php/CITS/article/view/303 Human Activity Recognition with Smartphones Using Machine Learning 2022-10-12T11:57:37+00:00 Wejdan Alghamdi wabdullahalghamdi0002@stu.kau.edu.sa Ameerah Alshahrani asalemalshahrani@stu.kau.edu.sa Nehal Otaif nahmedataif@stu.kau.edu.sa Najlaa Alqurashi nhassanalqurashi@stu.kau.edu.sa <p>Human activity recognition is widely used now in many applications, such as smart homes, health care, and business as well as in a wide range of pattern recognition and human-computer interaction research. In this paper, we use the same sensors embedded in smartphones (Accelerometer and Gyroscope) to track and recognize human activities.&nbsp; We employ a machine-learning algorithm, which is the Support Vector Machine (SVM) to improve the performance of human activity recognition. The experimental results on the HAR Dataset from the UCI repository indicate that our approach is practical and achieves 96% accuracy.</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences https://journals.kau.edu.sa/index.php/CITS/article/view/1578 Social Media Enabled Public Value Creation for A Saudi Arabian Municipality: A Critical Realism Paradigm Perspective 2023-12-07T10:03:56+00:00 Dr. Turkey Althagafi tthaqafi@dah.edu.sa Abeer Alghamdi aalghamdi@dah.edu.sa <p>Globally, government organizations including local government agencies have become progressively interested in using social media applications to open new venues of interactions with citizens. Due to the nature of social media applications in terms of users’ ability to generate content, a higher level of engagement is expected to take place for not only to deliver public services but also to design as well as render innovative public services. Despite the growth in literature on social media, there is still a limited understanding on what mechanisms should be employed to create public value by using social media applications. This study therefore aims to identify the causal mechanisms and other enabling other conditions that jointly explain public value creation using social media applications. To address this concern, we report on the development of a model to investigate public value creation using social media applications. The model has been empirically evaluated using a qualitative case study in a large Saudi Arabian Municipality from a critical realism perspective. The model and empirical evidence together contribute towards establishing a theoretical foundation for research into the impact of social media applications for public value creation. In addition, municipality managers can learn useful lessons drawing on our findings. The study also presents a methodological contribution to social media research by providing insights into the application of critical realism ontology and methodology for assessing public value creation through the use of social media applications.</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences https://journals.kau.edu.sa/index.php/CITS/article/view/1865 تصنيف التعليقات البرمجية متعدده التسميات باستخدام المحولات المدربة مسبقًا 2024-08-21T16:36:35+00:00 زرعه شبلي zshibli0002@stu.kau.edu.sa عماد البسام ealbassam@kau.edu.sa <p>تعد التعليقات البرمجية من الأسس في تطوير البرمجيات، ومع التزايد الكبير في عدد الأكواد البرمجية تتجلى أهمية تصنيف التعليقات البرمجية في تسهيل صيانة البرمجيات والتي تساعد المطورين من فهم الأكواد البرمجية بدقة وسهولة. تقدم هذه الدراسة منهجًا يستخدم التسميات المتعدده و نموذج المحولات المدربة مسبقًا لتصنيف التعليقات البرمجية في ثلاث لغات برمجة: بايثون، فارو، جافا. وقد أظهر النموذج المقترح نسبة تبلغ 0.64.كما يعمل النهج المقترح على تبسيط فهم وإدارة التعليقات البرمجية لتعزز كفاءة وإنتاجية تطوير البرمجيات. بالإضافة إلى ذلك، يمكن توسيع النهج المقترح ليشمل لغات البرمجة الأخرى ويشكل الأساس للأبحاث المستقبلية حول تصنيف التعليقات البرمجية.</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences https://journals.kau.edu.sa/index.php/CITS/article/view/2035 Investigating Active Learning based on Dynamic Data Selection techniques for Image Classification 2024-05-09T11:47:44+00:00 Salma Kammoun smohamad1@kau.edu.sa <p>This paper explores the efficacy of Active Learning (AL) techniques, specifically focusing on Dynamic Data Selection (DDS), for improving image classification tasks. AL is a machine learning paradigm that enables the automatic selection of the most informative data samples for annotation, thereby reducing the annotation burden and enhancing model performance. In this study, we investigate the integration of DDS techniques with AL strategies to iteratively select the most informative image samples for model training. We use a fine-tuned VGG16 as the underlying classification model due to their effectiveness in image analysis tasks. Our experimental evaluation involves comparing the performance of fine-tuned VGG16 trained with three AL-based DDS techniques on Arabic sign language dataset. We analyze various DDS strategies, including Random selection, Entropy-based selection, and margin selection to determine their impact on model accuracy and annotation efficiency. The results of our study demonstrate the effectiveness of margin selection method-based AL approach in improving the performance of recognition of 32 hand gestures for Arabic sign language (95.3 \%) while minimizing the annotation effort.</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences https://journals.kau.edu.sa/index.php/CITS/article/view/2112 Recent Advances in Dysarthric Speech Recognition: Approaches and Datasets 2024-10-21T11:31:33+00:00 Tahani Alrajhi taalrajhi@iau.edu.sa Mourad Ykhlef ykhlef@ksu.edu.sa Ahmed Alsanad aasanad@ksu.edu.sa <p>Dysarthria is a neuromotor speech disorder that results from physical disability and limits speech intelligibility. Dysarthric speakers can make use of speech recognition systems to help them communicate more effectively with others. This paper surveys the latest works conducted on dysarthric speech recognition that was carried out in a span of five years, specifically from 2018 until 2023. These works are categorized according to the approach that was followed to improve dysarthric speech recognition. The approaches include data augmentation, enhancement of dysarthric speech, speech and acoustic features, adaptation, and hybridization of multiple approaches.</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences https://journals.kau.edu.sa/index.php/CITS/article/view/2278 Optimizing Federated Learning for Medical Image classification: A Comparative Study of Pre-Trained Models on Compressed X-ray Imager 2024-07-03T12:27:24+00:00 Sawsan Alwadaie salwadaie@stu.kau.edu.sa Amani Jamal Atjamal@kau.edu.sa Samar Alkhuraij Salkhuraiji@kau.edu.sa Lamiaa Elrefaei lamia.alrefaai@feng.bu.edu.eg <p><br>أحدث ظهور التعلم الآلي، وخاصة التعلم العميق، ثورة في العديد من المجالات، بما في ذلك التشخيص الطبي. تستغل هذه الدراسة إمكانات التعلم الاتحادي أو التعلم التعاوني لمعالجة مخاوف الخصوصية وقيود الوصول إلى البيانات المتأصلة في التصوير الطبي.<br>نستكشف&nbsp; أداء خمسة نماذج للشبكات العصبية المدربة مسبقًا DENSENET121, RESNET18, VGGNET11, GOOGLENET, INCEPTION_V3<br>على مجموعة بيانات CheXpert ضمن بيئة محاكاة لتعلم الاتحادي او التعلم التعاوني. ويؤكد <br>البحث على تحسين مدة التدريب وتطبيق ضغط الصور&nbsp; JPEG للحصول على الكفاءة أثناء والسرعة<br>جولات الاتصال.<br>تشتمل منهجيتنا على تحليل مقارن لأداء النماذج قبل وبعد الضغط<br>وتقييم المنطقة الواقعة<br>تحت المنحنى وتقدير وقت التدريب.<br>تشير النتائج إلى أن ضغط الصور يمكن أن يحافظ على أداء النموذج أو يحسنه بينما يؤثر أيضًا على وقت التدريب.&nbsp;</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences https://journals.kau.edu.sa/index.php/CITS/article/view/2351 Tasaheel-v2: Development of Innovative Textual Analysis tool with Advanced Features 2024-10-02T13:35:36+00:00 Hanen Hemdi hthimdi@uj.edu.sa Fatmah Assiri fyassiri@uj.edu.sa <p>We introduce Tasaheel-v2, an automated tool specifically developed for Arabic Natural Language Processing (NLP)<br>and textual analysis tasks. This work is an extension to the first version, Tasaheel-v1, comprised of traditional NLP tasks<br>including stemming, segmentation, normalization, named entity recognition, and part of speech tagging. Furthermore, it<br>included cutting-edge analytic methods, such as specific emotion, polarity, linguistics, and domain-specific word tagging. In this<br>new innovative version, Tasaheel-v2, we introduce additional benefiting utilities designed to provide assistance for the Arabic<br>research community. We specifically integrate another Arabic-specific POS tagger, a sentiment analyzer, and English-to-Arabic<br>translation functions. We leverage the utilities provided in Tasaheel to develop a machine-learning model designed to identify<br>Arabic phishing emails and provide a thorough textual analysis to capture deceptive cues used to detect phishing linguistic<br>patterns. This tool contributes to the Arabic research domain by providing assistive NLP functions and textual analysis features<br>all in one tool</p> 2024-12-30T00:00:00+00:00 الحقوق الفكرية (c) 2024 Journal of King Abdulaziz University: Computing and Information Technology Sciences