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Abstract. This paper describes the electromagnetically-oriented 𝐿𝑇𝐼∅ dimensional basis that is based on the ref-

erence dimensions of Length (𝐿), Time (T), Electric Current (𝐼), and Electric Potential (∅). We utilize this basis 

in the matrix solution of dimensional-analysis (DA) problems involving mainly electromagnetic quantities. Rep-

resentations of electromagnetic quantities in the 𝐿𝑇𝐼∅ basis (compared with the standard 𝑀𝐿𝑇𝐼 basis that uses 

Mass (𝑀) instead of Potential (∅)) are more informative, much simpler, and have salient duality features. Moreo-

ver, DA computations of electromagnetic problems via the Gauss-Jordan algorithm in the 𝐿𝑇𝐼∅ basis are more 

efficient, much less error prone, and quicker to detect linear dependencies in the dimensional equations. Both 

details and advantages of the proposed method are explored via demonstrative examples, which are of obvious 

significance in the learning and teaching of electromagnetism. 

Key words. Dimensional analysis, dimensionless products, basis and regime variables, Gauss-Jordan elimination, 
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 1. Introduction 

Dimensional analysis (DA), fundamentally re-

lated to the principle of similitude, is an effec-

tive way to analyze a physical phenomenon 

without explicit knowledge of its governing 

physical laws, provided we are confident that 

such laws exist. In fact, DA can be used along 

with experimental data to develop an empiri-

cal mathematical model of the physical phe-

nomenon concerned. The use of DA is justified 

by the single premise that the phenomenon 

can be described by a dimensionally correct 

equation among the pertinent variables. We 

do not need or assume pre-knowledge of this 

equation or model, for, otherwise, DA 
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application would not be warranted. The 

prominent advantage of DA is that it dispenses 

with any knowledge of the inner mechanisms 

of the physical phenomenon. Dimensional 

analysis reduces the number of variables used, 

thereby facilitating fitting of equations to data. 

Another major advantage of DA is that it can 

partition the original variables in a general way 

into appropriate sets of basis (independent) 

variables and regime (dependent) ones, with 

each of the regime variables appearing (possi-

bly with basis variables) in a dimensionless 

grouping that enjoys a concrete physical inter-

pretation.  
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Successful DA application necessitates that we 

understand the underlying phenomenon well 

enough just to identify all the pertinent varia-

bles, which must be all quantifiable. While DA 

does not need to know the inner mechanisms 

of the underlying phenomenon, it does not of-

fer to explain these mechanisms, either. A 

complete model of the phenomenon  is not 

supplied by DA alone, since DA must be supple-

mented with further information, usually in 

the form of experimental data. Direct utility of 

DA is limited to product formulas, in which var-

iables are raised to certain exponents. 

Dimensional analysis has a long history extend-

ing for several centuries, but it was almost one 

century ago that Buckingham laid the mathe-

matical foundation for classical DA [1, 2]. Dur-

ing those centuries electricity and magnetism 

were developing as independent phenomena, 

and it was only in the nineteenth century that 

they were realized to be different manifesta-

tions of a single underlying theory, collectively 

called Maxwell’s equations of electromag-

netism (EM). One might observe the existence 

of an intimate relation between dimensional 

analysis and electromagnetism, even from the 

times of their infancies. In fact, dimensional 

analysis aided Maxwell, the undisputed father 

of modern electromagnetism, in the formula-

tion of his celebrated equations [3]. The utility 

of dimensional analysis in solving problems of 

electromagnetics is exemplified by an example 

in the seminal paper of Buckingham [1]. Cast-

ing Maxwell’s equations in a dimensionless 

form facilitates utilizing them in mathematical 

proofs [4], and allows their solution without 

dealing with very large numbers [5]. A modern 

prominent technique in electromagnetics (and 

other branches of physics), viz., that of differ-

ential forms, relies heavily on DA concepts to 

classify various quantities as volume, area, 

line, or none densities or quotients [6-9]. There 

are many publications linking DA and EM units 

and dimensions [10-29], and many others ap-

plying the most fundamental DA theorem 

(Buckingham Pi Theorem) to EM problems [30-

49]. 

This paper offers a detailed exposition on using 

the electromagnetically-oriented 𝐿𝑇𝐼∅ dimen-

sional basis (instead of the mechanically-ori-

ented 𝑀𝐿𝑇𝐼 dimensional basis associated with 

the SI system of units) for solving DA problems 

mainly involving electromagnetic quantities. 

We describe transformations between the two 

bases, and report novel observations on char-

acteristic features of EM and non-EM quanti-

ties, which are revealed by their dimensional 

exponents in the 𝐿𝑇𝐼∅ basis. We supplement 

the use of this basis by the utilization of a mod-

ern matrix approach for Dimensional Analysis 

[49-59] in the derivation of dimensionless 

products via the celebrated Gauss-Jordan algo-

rithm [60], which possesses many obvious ad-

vantages for handling linear dependencies, 

and for partitioning variables into basis and re-

gime ones. The task of this algorithm is to re-

duce the augmented dimensional matrix into a 

reduced row echelon form (RREF). This task is 

considerably facilitated when the submatrix 

associated with the basis variables is shaped as 

closely as possible to a unit matrix, a goal that 

can be achieved with the use of the 𝐿𝑇𝐼∅ basis, 

provided electromagnetic quantities dominate 

the basis variables of the DA problem, and, not 

necessarily its regime variables.  

Rushdi and Rushdi [54] list many salient fea-

tures of the Gauss-Jordan algorithm that makes 

it our unrivaled choice for handling DA prob-

lems (whether in a manual or an automated 

fashion). This algorithm acts as a mechanism of 

switching from an initial basic set of agreed-

upon fundamental dimensions to a final set of 

desirable base dimensions. That role resembles 

this algorithm’s role as a part of the Simplex 

Method of linear programming. The Gauss-Jor-

dan algorithm does not make any presupposi-

tion of the rank r of the dimensional matrix. 

Neither does it need any preparatory work to 

determine the matrix rank (for example, by 

evaluating determinants via Cramer’s rule as 

suggested by Middendorf [33]). This algorithm 

integrates the step of rank determination with 

its own work. If it encounters a row whose en-

tries are all 0 (an all-0 row) it avoids this row 

by interchanging it with a latter row that is not 

all-0. The procedure terminates if there is no 
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remaining row that is not all-0. The matrix rank 

is simply the number of rows successfully pro-

cessed by the procedure (for which, there exist 

non-zero pivoting elements). For our manual 

solutions here, if the algorithm creates an all-0 

row, then we will simply omit it in the next 

stage to avoid notorious swapping operations. 

The remainder of this paper is structured as fol-

lows. Section 2 discusses the issue of selecting 

fundamental dimensions for electromagnetics. 

The problem of transformations between the 

𝐿𝑇𝐼∅ basis and the 𝑀𝐿𝑇𝐼 basis is subsequently 

explored, first by scalar techniques (Section 3), 

and later by a novel application of the Gauss-

Jordan algorithm (Section 4). Section 5 lists the 

dimensional exponents for EM and non-EM 

quantities in both the 𝐿𝑇𝐼∅ and 𝑀𝐿𝑇𝐼 bases, 

and points out the superior features possessed 

by the 𝐿𝑇𝐼∅ basis for handling electromagnetic 

quantities. Several illustrative examples are 

then presented in Section 6 to demonstrate 

the effectiveness of the proposed approach 

which makes the most of the Gauss-Jordan al-

gorithm through the use of the electromagneti-

cally-oriented basis for the dimensional analy-

sis of EM problems. Section 7 concludes the pa-

per. 

2. Selection of Fundamental Dimensions for 

Electromagnetics 

The fundamental dimensions may be chosen ra-

ther arbitrarily, but, for practical reasons, 

should be chosen appropriately, and should be 

scientifically justifiable. The first step in the se-

lection of a dimensional system is to choose the 

number N of fundamental dimensions. There 

are two extreme values for N as it can be as 

small as one in a mono-dimensional system, 

and it might be large enough to allow all dimen-

sions to be fundamental ones in an omni-dimen-

sional system. Szirtes [43] demonstrates the 

possibility and (at the same time) the impracti-

cality of these two extreme systems: 

 

• In a mono-dimensional system, all di-

mensions, except a single fundamental 

one, are derived and expressed as posi-

tive, zero, or negative powers of that 

single fundamental dimension. Such a 

system is totally impractical, suffers 

from excessive ambiguities, and it 

forces its users to use dimensions 

which are terribly inappropriate. It is 

particularly inferior to a (moderately) 

multidimensional one, since it drasti-

cally undermines the utilization of the 

requirement of dimensional homoge-

neity in deriving and verifying formu-

las and in constructing dimensionless 

products. 

• In an omni-dimensional system, no am-

biguity is encountered, since every di-

mension is fundamental and none is de-

rived. Therefore, variables of different 

dimensions must be measured entirely 

independently, and every physical rela-

tion would be a separate scientific dis-

covery requiring at least one mandatory 

dimensional ‘constant of nature,’ that 

would have to be determined separately 

so as to make the formula dimension-

ally homogeneous. 

 

Since many drawbacks result from the selection 

of too few or too many fundamental or refer-

ence dimensions, the best choice seems to be a 

traditional (moderately) multidimensional sys-

tem [43]. A considerable convenience can stem 

from using three to five reference dimensions 

as rendered feasible by the problem at hand. 

Bridgman [61] emphasizes the fact that there is 

nothing sacrosanct about the number of refer-

ence dimensions and that dimensional analysis 

is merely a man-made tool that may be manip-

ulated at will. This principle of free choice of 

the reference dimensions has been widely ac-

cepted, preached and practiced [62]. In fact, the 

International System of Units (SI System) uses 

seven fundamental dimensions (N = 7), namely 

mass, length, time, electric current, tempera-

ture, amount of substance, and luminous inten-

sity. It also employs two supplementary funda-

mental units for two particular dimensionless 

quantities, namely: the plane angle 

(length/length) and the solid angle (area/length 

squared). Treatment of these dimensionless 

quantities as fundamental dimensions leads to a 

convenient and systematic way of conversion 

between different systems [11, 51]. The SI 
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system suffers from few ambiguities such as its 

assignment of non-distinct designations for 

torque and energy or for pressure, normal stress 

and shear stress [43]. 

 

The SI system is an outgrowth of the 𝑀𝐿𝑇 sys-

tem covering the kinetic quantities of Mass (𝑀), 

Length (𝐿), and Time (𝑇). This mass-based sys-

tem was competitive with (and more popular, 

albeit less efficient than) another three-dimen-

sional system, viz., the 𝐹𝐿𝑇 system, in which 

force (𝐹) replaces Mass as a fundamental di-

mension. The 𝑀𝐿𝑇 system can express all me-

chanical quantities in a unique way, but it expe-

riences ambiguities with many electromagnetic 

quantities [29]. To extend the 𝑀𝐿𝑇 system to 

cover electromagnetic quantities appropriately, 

it suffices to add only one additional quantity 

[11], which originally was the electric charge 

(𝑄) [63], but was later superseded with the elec-

tric current (𝐼). Dimensional analysis involving 

electromagnetic/electromechanical quantities, 

therefore, is typically based on the use of the 

𝑀𝐿𝑇𝐼 multidimensional system. An alternative 

system using the same number of fundamental 

dimensions is the 𝐿𝑇𝐼∅ system [43, 57, 64, 65], 

where ∅ stands for electric potential or voltage. 

Though this system has been known for more 

than a century, it has never been fully devel-

oped or adequately utilized. It starts as a system 

covering the kinematic quantities of Length (𝐿) 

and Time (𝑇), and augments it with the two 

electric (or electromagnetic) quantities of cur-

rent and potential. Likewise, in the 𝐿𝑇𝑄Φ sys-

tem that was proposed by Kalantaroff in 1929 

[12, 27, 29], electric charge (𝑄) and magnetic 

flux (Φ) are taken as fundamental dimensions, 

again in addition to Length and Time. All these 

modern multidimensional systems use four fun-

damental dimensions, but the split of these four 

dimensions to purely mechanical and purely 

electromagnetic ones is 3 + 1 for mechani-

cally-oriented systems (𝑀𝐿𝑇𝑄, 𝑀𝐿𝑇𝐼, 𝐹𝐿𝑇𝑄, 

and 𝐹𝐿𝑇𝐼) and 2 + 2 for the electromagneti-

cally-oriented ones (𝐿𝑇𝐼∅ and 𝐿𝑇𝑄Φ). The two 

electromagnetic quantities employed in these 

two latter systems are dual quantities, where 

dual electromagnetic quantities are obtained by 

interchanging the dimensions of current and 

voltage (or, equivalently, by interchanging the 

dimensions of electric charge and magnetic 

flux) [64]. A more elaborate understanding of 

the concept of ‘duality’ might be secured by re-

ferring to any standard text on electromagnetics 

[66-68]. 

 

Thomas [64] offers a lucid justification for the 

introduction of the 𝐿𝑇𝐼∅ system that essentially 

goes as follows. In a mechanical system, di-

mensional simplification is usually achieved by 

employing ‘force’ as a fundamental or basis 

quantity. By direct electromechanical analogy, 

the electrical analogous quantity for ‘force’, 

namely ‘voltage’, is suggested to be a funda-

mental quantity. Since ‘voltage’ acts as the 

‘forcing function’ in a series electric circuit, the 

‘response’ in such a circuit, namely ‘current’ is 

proposed as a second fundamental quantity. Al-

ternatively, one might view a parallel electric 

circuit, in which ‘current’ is the ‘forcing func-

tion’ and ‘voltage’ is the ‘response’, thereby 

coming to the same conclusion. ‘Time’ is an in-

dispensable choice for a third fundamental 

quantity, since many electric phenomena are 

dynamic, in which many prominent quantities 

stand for the time rate of change of other quan-

tities. It is remarkable to note that the product  

𝑇𝐼∅  of the three fundamental quantities chosen 

so far stands for ‘energy’, and that many other 

important physical quantities of electric circuits 

rely solely on the three-element basis of 𝑇𝐼∅. 

However, to extend our coverage from that of 

lumped electric-circuit phenomena to that of 

distributed electromagnetic phenomena, we 

need to add ‘length’ as a fourth fundamental 

quantity. 

 

3. Transformation between Two Fundamental 
Dimensional Systems for Electromagnetics  

The basic liaison between mechanical and elec-

tromagnetic quantities arises from the fact that 

mechanical energy and electromagnetic energy 

share the same nature and dimension. Now, the 

dimension of mechanical energy is given by  

[𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦] = [𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑤𝑜𝑟𝑘] =
[𝐹𝑜𝑟𝑐𝑒][𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡] =
[𝑀𝑎𝑠𝑠][𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛]𝐿 = 𝑀 𝐿2T−2,                  (1) 
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while the dimension of electromagnetic energy 

is given by  

[𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦] =
[𝑃𝑜𝑦𝑛𝑡𝑖𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟][𝐴𝑟𝑒𝑎][𝑇𝑖𝑚𝑒] =
 [𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦][𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦] 𝐿2𝑇 =

∅𝐿−1𝐼𝐿−1𝐿2𝑇 = ∅𝐼𝑇 ,                                     (2) 

The result in (2) could be obtained by employ-

ing a lumped electric circuit rather than a dis-

tributed electromagnetic phenomenon, for then 

(2) could be replaced by the dimension of elec-

tric energy, which is [Electric voltage] [Electric 

current] [Time], which is again ∅𝐼𝑇. Equating 

(1) to (2) results in  

𝑀 𝐿2T−2 = ∅𝐼𝑇.                     (3) 

Hence, we express the dimension of Mass (𝑀)  

in the 𝐿𝑇𝐼∅ basis, and the dimension of electric 

potential (∅) in the 𝑀𝐿𝑇𝐼 basis as 

𝑀 = 𝐿−2 𝑇3 𝐼 ∅.                      (4) 

∅ = 𝑀 𝐿2 𝑇−3 𝐼−1.                (5) 

Now, we consider an arbitrary physical quantity 

𝑄 expressed in the 𝑀𝐿𝑇𝐼 and 𝐿𝑇𝐼∅ bases by the 

vectors of exponents  𝒓 =  [𝑟1   𝑟2   𝑟3   𝑟4]𝑇  and 

𝑹 =  [𝑅1   𝑅2   𝑅3   𝑅4]𝑇. Our aim is to find the 

transformation matrix 𝑻 that transforms the 

vector of exponents 𝑹 in the 𝐿𝑇𝐼∅ basis to the 

vector of exponents 𝒓 in the 𝑀𝐿𝑇𝐼 basis. The 

dimension [𝑄] of 𝑄 is given by 

[𝑄] = 𝑀𝑟1  𝐿𝑟2  𝑇𝑟3  𝐼𝑟4 = 𝐿𝑅1 𝑇𝑅2  𝐼𝑅3 ∅𝑅4 =
(𝐿−2 𝑇3 𝐼 ∅)𝑟1  𝐿𝑟2  𝑇𝑟3  𝐼𝑟4 =
𝐿𝑅1 𝑇𝑅2  𝐼𝑅3 (𝑀 𝐿2 𝑇−3 𝐼−1)𝑅4 ,             

and hence, the various exponents are related by   

𝑟1 = 𝑅4,  𝑟2 = 𝑅1 + 2 𝑅4, 𝑟3 = 𝑅2 − 3 𝑅4,  

𝑟4 =  𝑅3 − 𝑅4 .                                   (7) 

These scalar relations can be written as a pair of 

matrix equations  

𝒓 = 𝑻𝑹, 𝑹 = 𝑻−𝟏 𝒓.                 (8) 

The two matrix equations (8) are conveniently 

displayed in scalar form in Fig. 1, in which the 

column vector at the right of the square trans-

formation matrix 𝑻 or its inverse 𝑻−𝟏 is written 

as a row vector on top of the matrix [49, 53-59, 

69], and the equality sign is omitted and implic-

itly understood. The four vectors comprising 

the transformation matrix 𝑻 are the vectors of 

exponents for the variables 𝐿, 𝑇, 𝐼, and ∅  in the 

𝑀𝐿𝑇𝐼 basis, while the four vectors comprising 

the inverse transformation matrix 𝑻−𝟏 are the 

vectors of exponents for the variables 𝑀, 𝐿, 𝑇, 

and 𝐼  in the 𝐿𝑇𝐼∅  basis. In Fig. 1, 𝑻 𝑻−𝟏 =

𝑻−𝟏 𝑻 = 𝑰, as required. 

 
𝑅1 𝑅2 𝑅3 𝑅4 

𝑟1
 0 0 0 1 

𝑟2
 1 0 0 2 

𝑟3 0 1 0 −𝟑 

𝑟4 0 0 1 −𝟏 

 

 
𝑟1 𝑟2 𝑟3 𝑟4 

𝑅1
 −𝟐 1 0 0 

𝑅2
 3 0 1 0 

𝑅3 1 0 0 1 

𝑅4 1 0 0 0 

Figure 1. Convenient display for the transfor-

mations 𝒓 = 𝑻𝑹 and 𝑹 = 𝑻−𝟏 𝒓  from the 𝑳𝑻𝑰∅  

dimensional basis to the 𝑴𝑳𝑻𝑰 dimensional basis 

and back. 

The two matrix equations (8) can be used to 

construct a table of dimensional exponents for 

all electromechanical quantities of interest in 

both the mechanically-oriented 𝑀𝐿𝑇𝐼 dimen-

sional basis and the electromagnetically-ori-

ented 𝐿𝑇𝐼∅ dimensional basis. Such a table has 

appeared earlier in Thomas [64], and is split 

here into two tables (Table 2 and Table 3) in 

order to give further explanations (in forthcom-

ing sections) of the concept of duality in elec-

tromagnetism. 

4. Transformation Derivation via the Gauss-

Jordan Algorithm  

Throughout this paper, we consider that a 

sought product 𝜋𝑗 of a set of physical variables 

is dimensionless if, and only if, the exponents 

of these variables are a solution of the set of 𝑝 

homogeneous linear equations (not necessarily 

linearly independent) in 𝑛 unknowns, 

 𝑅1 = −2𝑟1 + 𝑟2, 𝑅2 = 3𝑟1 + 𝑟3,  𝑅3 =  𝑟1 +
𝑟4,  𝑅4 = 𝑟1.                                       (6) 



King Abdulaziz Journal: Engineering Sciences, 2022 Volume 32 No 1 pp.:1-24, O DOI:xx.xxx/ 

6  https://journals.kau.edu.sa/index.php/JENGSCI 

expressed in matrix form as [33, 43, 49, 53-59, 

62]: 

𝑫𝒛 = 𝟎,                                      (9) 

where 𝑫 is the 𝑝 × 𝑛 dimensional matrix. This 

matrix has 𝑝 rows (𝑝 ≤ 𝑁), which represent the 

adopted fundamental reference dimensions or 

elements of the dimensional basis, and 𝑛 col-

umns, which denote the variable exponents in 

the sought dimensionless product, or, with a 

gross (albeit common and appealing) abuse of 

notation, designate the variables themselves. 

We will designate a column twice: (a)  by the 

correct exponent notation, and (b) by the com-

mon variable notation. A typical entry of this 

matrix is the exponent to which a reference di-

mension (row) is raised in the dimensional 

product formula representing the particular var-

iable (column).  

The vector 𝒛 comprises the 𝑛 variable expo-

nents in the sought dimensionless product, 

which are unknown constants, yet to be inter-

related (partially determined). The Gauss-Jor-

dan algorithm [60] achieves this purpose of in-

ter-relating the exponents by applying elemen-

tary row operations that transform the matrix 𝑫 

into a reduced row echelon form (RREF). The 

vector of exponents 𝒛 is not written as a column 

vector to the right of the dimensional matrix as 

suggested by Eq. (9), but is written (in a non-

conventional way) as a row vector on top of it 

[53-59, 69]. In addition, the equality sign in Eq. 

(9) is omitted and implicitly understood, while 

the zero vector in the R.H.S. of Eq. (9) is added 

as an extra vector for 𝑫 resulting in an aug-

mented matrix, to whose entire rows we apply 

the same elementary row operations in the tab-

leaus of  the Gauss-Jordan (GJ) algorithm. Such 

operations are explained by assignment opera-

tions written in the leftmost column of the algo-

rithm tableaus, wherein 𝐸𝑖
(𝑘) denotes the equa-

tion of augmented row 𝑖 at stage 𝑘 of the algo-

rithm. The structure so obtained constitute 

standard Gauss-Jordan tableaus and is exempli-

fied by the tableaus in Tables 1 and 4-11. 

As a prelude to employing the Gauss-Jordan 

procedure in solving DA problems, we report 

herein an unusual  application for it as an 

alternative instructive means for deriving the 

transformations in Eqs. (6-8). Table 1 uses the 

Gauss-Jordan procedure for moving from the 

mechanically-oriented 𝑀𝐿𝑇𝐼 dimensional basis 

to the electromagnetically-oriented 𝐿𝑇𝐼∅ di-

mensional basis and back. The table involves 

six exponents (𝑚, 𝑙, 𝑡, 𝑖, 𝑓 and 𝑞), which corre-

spond to the variables 𝑀, 𝐿, 𝑇, 𝐼, ∅ and 𝑄,  and 

hence it covers all variables of the 𝑀𝐿𝑇𝐼 and 

𝐿𝑇𝐼∅ bases as well as the quantity of interest 𝑄 

(not to be confused with the electric charge). 

The table consists of five stages, of which each 

of stages 0, 2, and 4 has a specified dimensional 

basis (while each of the remaining stages lacks 

such a basis). Stage 0 (and also its identical 

stage 4) is characterized by the 𝑀𝐿𝑇𝐼 dimen-

sional basis, since the submatrix of 𝑫 under the 

𝑀, 𝐿, 𝑇, and 𝐼 variables is a unit matrix, while 

stage 2 is characterized by the 𝐿𝑇𝐼∅ dimen-

sional basis, since the submatrix of 𝑫 under the 

𝐿, 𝑇, 𝐼 and ∅ variables is a unit matrix. There-

fore, the column under the variable of interest 

𝑄 is its vector of dimensional exponents, which 

is 𝒓 in stages 0 and 4 (of the 𝑀𝐿𝑇𝐼 basis) and 𝑹 

in stage 2 (of the 𝐿𝑇𝐼∅  basis). 

Table 1 elegantly recovers the transformations 

in Eqs. (6-8) that are displayed in Fig. 1. In fact, 

it does so twice, consistently giving the same 

result. On one hand, the scalar values expressed 

in the 𝑄 column recover Eq. (6) at stage 2 and 

recover Eq. (7) at stage 4. On the other hand, 

going in column 𝑄 from 𝒓 at stage 0 to 𝑹 at 

stage 2 amounts to a left multiplication of the 

entire matrix by the inverse transformation ma-

trix 𝑻−𝟏, and going in the same column from 𝑹 

at stage 2 to 𝒓 at stage 4 amounts to a left mul-

tiplication, again of the entire matrix, by the 

transformation matrix 𝑻 itself. Therefore, the 

submatrix of 𝑫 under the 𝑀, 𝐿, 𝑇, and 𝐼 varia-

bles (which is a unit matrix in stage 2) is the 

transformation matrix 𝑻 in each of stages 0 and 

4 (highlighted in pale bluish-green). Likewise, 

the submatrix of 𝑫 under the 𝐿, 𝑇, 𝐼 and ∅ vari-

ables (which is a unit matrix in stages 0 and 4) 

is the inverse matrix 𝑻−𝟏 in stage 2 (highlighted 

in pale orange). 

This present situation is reminiscent of the ini-

tial and final tableaus in the Simplex Method 
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used for solving linear-programming problems 

[54]. In the Simplex Method, the 𝑀𝐿𝑇𝐼 varia-

bles depart their list of basic variables in stage 

0, so that the 𝐿𝑇𝐼∅ variables can enter this list 

(replacing them one by one) in stage 2. The only 

difference between the two situations is that: in 

the present case these entering and departing 

variables are known a priori, while in the lin-

ear-programming case, each entering or depart-

ing variable is selected at a specific step, ac-

cording to rules dictated by some objective 

function [54].  

We stress that though Table 1 outlines a spe-

cific procedure that is apparently of a limited 

value (one for moving from the 𝑀𝐿𝑇𝐼 dimen-

sional basis to the 𝐿𝑇𝐼∅ one, and vice versa), 

that table can be modified to handle the matrix 

transformation and inverse transformation (if 

any) between any two dimensional bases.   

5. Dimensional Exponents for EM and non-EM 

Quantities 

The electromagnetically-oriented 𝐿𝑇𝐼∅ dimen-

sional basis is a four-dimensional basis that de-

votes two of its four reference dimensions to 

two electromagnetic (EM) quantities, electric 

current and electric potential (or voltage), 

which happen to be dual. As a result, this basis 

relates the 𝐿𝑇𝐼∅ vectors of indices 

  𝑹𝑎 =  [𝑅1
𝑎    𝑅2

𝑎   𝑅3
𝑎  𝑅4

𝑎 ]𝑇 and   𝑹𝑏 =

 [𝑅1
𝑏   𝑅2

𝑏   𝑅3
𝑏  𝑅4

𝑏 ]𝑇  of two dual EM quan-

tities 𝑎 and 𝑏 as follows 

𝑅1
𝑎 = 𝑅1

𝑏 ,                        (10a) 

𝑅2
𝑎 = 𝑅2

𝑏 ,                       (10b) 

𝑅3
𝑎 = 𝑅4

𝑏 ,                       (10c) 

𝑅4
𝑎 = 𝑅3

𝑏.                        (10d) 

Equations (10) indicate that any two dual EM 

quantities have identical 𝐿 and 𝑇 exponents, 

and swapped 𝐼 and ∅ exponents in the 𝐿𝑇𝐼∅ ba-

sis. Table 2 displays dimensional exponents of 

pairs of dual electromagnetic quantities in the 

mechanically-oriented 𝑀𝐿𝑇𝐼 dimensional basis 

and the electromagnetically-oriented 𝐿𝑇𝐼∅  di-

mensional basis.  

A physical quantity such that 

𝑟4 = 0, or equivalently, 

 𝑅3 = 𝑅4 ,                         (11) 

is a self-dual quantity (in the electromagnetic 

(EM) sense), i.e., a quantity that lacks an EM 

dimension genuinely or through cancellation. A 

self-dual quantity might be 

a) A genuine non-EM quantity, such 

as any of the six fundamental quan-

tities of mass, length, time, temper-

ature, amount of substance, lumi-

nous intensity, as well as many 

quantities composed solely of these 

six quantities. Note that the afore-

mentioned six fundamental quanti-

ties are precisely the seven funda-

mental SI dimensions with the elec-

tromagnetic dimension excluded.  

b) A product of two dual EM quanti-

ties, such as  𝜖𝜇, 𝐿𝐶, 𝑉𝐼, 𝑬 × 𝑯 and 

QΦ (see Table 2), where each of the 

original EM quantities violates each 

of the two equivalent conditions 

(11).  Note that two dual quantities 

of exponents 𝑹𝑎 and  𝑹𝑏  satisfying 

(10) have a product of indices 

2𝑅1
𝑎, 2𝑅2

𝑎,  𝑅3
𝑎 + 𝑅4

𝑎 and 𝑅4
𝑎 +

𝑅3
𝑎, and hence it satisfies each of 

the two equivalent conditions of 

self-duality (11). 

In Table 2, the exponent 𝑅1 for the length di-

mension in the 𝐿𝑇𝐼∅ dimensional basis is such 

that: 

• 𝑅1 = 0 for the lumped quantities 

𝐼, 𝑉, 𝐿, 𝐶, 𝑍, 𝑅, 𝑌 and G,  in addition 

to the quantities Q and Φ which are 

the time integrals of the fundamen-

tal quantities 𝐼 and ∅.  
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Table 1. The Gauss-Jordan procedure for moving from the mechanically-oriented 𝑴𝑳𝑻𝑰 dimen-

sional basis to the electromagnetically-oriented 𝑳𝑻𝑰∅  dimensional basis and back. 

 

 

Stage Number 
𝑀 𝐿 𝑇 𝐼 ∅ 𝑄 

 

 

 𝑚 𝑙 𝑡 𝑖 𝑓 𝑞   

𝐸1
(0)  1 0 0 0 1 𝑟1 0 

𝐸2
(0) 0 0 1 0 0 2 𝑟2 0 

𝐸3
(0)  0 0 1 0 −3 𝑟3 0 

𝐸4
(0)  0 0 0 1 −1 𝑟4 0 

  𝐸1
(1) ← 𝐸2

(0)    0 1 0 0 2 𝑟2 0 

𝐸2
(1) ← 𝐸3

(0)  0 0 1 0 −3 𝑟3 0 

𝐸3
(1) ← 𝐸4

(0) 1 0 0 0 1 −1 𝑟4 0 

𝐸4
(1) ← 𝐸1

(0)  1 0 0 0 1 𝑟1 0 

  𝐸1
(2) ←  𝐸1

(1) −2𝐸4
(1)  −2 1 0 0 0 𝑅1 = −2𝑟1 + 𝑟2 0 

𝐸2
(2) ← 𝐸2

(1) + 3𝐸4
(1)  3 0 1 0 0 𝑅2 = 3𝑟1 + 𝑟3 0 

𝐸3
(2)  ← 𝐸3

(1) + 𝐸4
(1)   2 1 0 0 1 0  𝑅3 = 𝑟1 + 𝑟4 0 

𝐸4
(2) ← 𝐸4

(1)  1 0 0 0 1 𝑅4 = 𝑟1 0 

𝐸1
(3) ← 𝐸4

(2)  1 0 0 0 1 𝑅4 0 

𝐸2
(3) ← 𝐸1

(2)  −2 1 0 0 0 𝑅1 0 

𝐸3
(3) ← 𝐸2

(2) 3 3 0 1 0 0 𝑅2 0 

𝐸4
(3) ← 𝐸3

(2)  1 0 0 1 0  𝑅3 0 

  𝐸1
(4) ←  𝐸1

(3)  1 0 0 0 1 𝑟1 = 𝑅4  0 

𝐸2
(4) ← 𝐸2

(3) + 2 𝐸1
(3)    0 1 0 0 2 𝑟2 = 𝑅1 + 2 𝑅4 0 

𝐸3
(4)  ← 𝐸3

(3) − 3 𝐸1
(3)   4 0 0 1 0 −3  𝑟3 = 𝑅2 − 3 𝑅4 0 

𝐸4
(4) ← 𝐸4

(3)− 𝐸1
(3)  0 0 0 1 −1 𝑟4 =  𝑅3 − 𝑅4 0 

 

• 𝑅1 = −1 for the per-line quantities 

𝐻, 𝐸, 𝜇 and ∈. Among these, the 

vector quantities  𝑯  and 𝑬 fre-

quently appear in the form 𝑯. 𝒅𝒍  

and 𝑬. 𝒅𝒍 (with 𝒅𝒍 depicting 

infinitesimal length), which are 

conveniently represented as 1-(dif-

ferential) forms 𝐻𝑑𝑙  and 𝐸𝑑𝑙, or as 

integrands over curves (quantities 
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that can be integrated along a one-

dimensional curve) [6-9]. 

• 𝑅1 = −2 for the per-surface quanti-

ties 𝑩 and 𝑫. These frequently ap-

pear in the form 𝑩. 𝒅𝒔 and 𝑫. 𝒅𝒔 

(with 𝒅𝒔  depicting infinitesimal 

area), which are conveniently repre-

sented as 2-(differential) forms 𝐵𝑑𝑠 

and 𝐷𝑑𝑠, or as integrands over sur-

faces (quantities that can be inte-

grated over a two-dimensional sur-

face) [6-9]. 

• 𝑅1 = −3 for the per-volume quanti-

ties 𝑩. 𝑯  and 𝑫. 𝑬. These fre-

quently appear in the form 𝑩. 𝑯 𝑑𝑉  

and 𝑫. 𝑬 𝑑𝑉 (with 𝑑𝑉   depicting in-

finitesimal volume), which are con-

veniently represented as 3-(differ-

ential) forms 𝐵𝐻𝑑𝑙  and 𝐷𝐸𝑑𝑙, or 

integrands over volumes (quantities 

that can be integrated over a three-

dimensional space) [6-9]. 

 

 

Table 2. Dimensions of pairs of dual EM quantities in the mechanically-oriented 𝑴𝑳𝑻𝑰 dimen-

sional basis and the electromagnetically-oriented 𝑳𝑻𝑰∅  dimensional basis. 

Physical Quantity Symbol The 𝑴𝑳𝑻𝑰 Dimensional Basis The 𝑳𝑻𝑰∅ Dimensional Basis 

𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 

Electric current 𝑰 0 0 0 1 0 0 1 0 

Electric voltage 𝑽 1 2 −𝟑 −𝟏 0 0 0 1 

Magnetic field intensity H 0 −𝟏 0 1 −𝟏 0 1 0 

Electric field intensity E 1 1 −𝟑 −𝟏 −𝟏 0 0 1 

Permeability 𝝁 1 1 −𝟐 −𝟐 −𝟏 𝟏 −𝟏 𝟏 

Permittivity ∈ −𝟏 −𝟑 𝟒 𝟐 −𝟏 𝟏 𝟏 −𝟏 

Magnetic flux density B 1 𝟎 −𝟐 −𝟏 −𝟐 1 0 1 

Electric flux density D 0 −𝟐 1 𝟏 −𝟐 1 1 0 

Magnetic flux  𝚽 1 𝟐 −𝟐 −𝟏 𝟎 1 0 1 

Electric Charge Q 0 𝟎 1 𝟏 𝟎 1 1 0 

Inductance 𝑳 1 2 −𝟐 −𝟐 𝟎 𝟏 −𝟏 𝟏 

Capacitance 𝑪 −𝟏 −𝟐 𝟒 𝟐 𝟎 𝟏 𝟏 −𝟏 

Impedance, resistance or 

inductive reactance 

𝒁, 𝑹 or  

𝝎𝑳 

1 2 −𝟑 −𝟐 𝟎 0 −𝟏 𝟏 

Admittance, conductance 

or capacitive reactance 

𝒀, 𝑮 or  

𝝎𝑪 

−𝟏 −𝟐 𝟑 𝟐 𝟎 𝟎 𝟏 −𝟏 

Magnetic dot product B.H 1 −𝟏 −𝟐 𝟎 −𝟑 1 1 1 

Electric dot product D.E 1 −𝟏 −𝟐 𝟎 −𝟑 1 1 1 

In line with the observations above, Thomas 

[64] point out that the 𝐿𝑇𝐼∅ dimensional basis 

justifies the unit names of farad/m and henry/m 

assigned to permittivity ∈ and permeability 𝜇 

when compared with the unit names of farad 

and henry given to capacitance 𝐶 and induct-

ance 𝐿. Likewise, this basis justifies the unit 

names of field intensities: 𝐻 (ampere/m) and 𝐸 

(volt/m), as well as those of flux densities: 𝐵 

(weber/m2) and 𝐷 (coulomb/m2). 

Table 3 displays dimensional exponents of self-

dual physical quantities in the 𝑀𝐿𝑇𝐼 dimen-

sional basis and the 𝐿𝑇𝐼∅ dimensional basis. 

The quantities in this table are partitioned as 

mass-independent quantities with rather simple 

𝐿𝑇𝐼∅ exponents (highlighted in pale blue) and 

mass-dependent ones with rather non-simple 

𝐿𝑇𝐼∅ exponents (highlighted in pale orange). 

According to Eq. (11), these quantities do not 

need an electromagnetic dimension (𝑟4 = 0), 

and can be described in the 𝑀𝐿𝑇 basis (which 

was sufficient before the era of electricity and 

magnetism). For all quantities in Tables 2 and 

3, the absolute value of each of the two electro-

magnetic exponents is bounded and does not 

exceed one (𝑅3, 𝑅4 𝜖 {−1,0,1}). 

Tables 2 and 3 clearly indicate that representa-

tions of electromagnetic quantities in the 𝐿𝑇𝐼∅ 
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basis (compared with the standard 𝑀𝐿𝑇𝐼 basis) 

are more informative, much simpler, and par-

tially self-checking (thanks to the boundedness 

of the two electromagnetic exponents and the 

inter-relations (10) among exponents of dual 

quantities). Our thesis herein is that the 𝐿𝑇𝐼∅ 

basis should be the one of choice in the matrix 

solution of dimensional-analysis problems in-

volving predominantly electromagnetic quanti-

ties.  

The following section demonstrates, by way of 

examples, that DA computations of electro-

magnetic problems via the Gauss-Jordan algo-

rithm in the 𝐿𝑇𝐼∅ basis are more efficient, 

much less error prone, and quicker to detect lin-

ear dependencies (if any) in the dimensional 

equations. 

6. Various Examples Comparing the 𝑳𝑻𝑰∅  and 
𝑴𝑳𝑻𝑰  Dimensional Bases 

6.1. Transient analysis of an RL parallel circuit 

This subsection deals with a problem of elec-

tric-circuit theory, which models the lumped 

special case of the (generally distributed) elec-

tromagnetic phenomena. 

Let us consider the situation in which a DC cur-

rent source of constant value 𝐼 is imposed for 

time 𝑡 ≥ 0 on a parallel combination of a re-

sistance 𝑅 and an inductance 𝐿 (Figure 2). 

The transient voltage 𝑣(𝑡) on this parallel com-

bination is required for time 𝑡 ≥ 0, and hence 

the variable 𝑣 must be a regime variable [53, 

54, 70], and it is placed last in a proposed di-

mensionless product   

𝜋 = 𝑘  𝐿𝑙   𝑅𝑟  𝐼𝑖  𝑡𝜏  𝑣𝑉,               (12)   

where 𝑘 is a dimensionless constant. The most 

important variable among the remaining varia-

bles is  𝑡, and it is placed immediately before 𝑣. 

Table 4 demonstrates the Gauss-Jordan proce-

dure for solving this problem in the 𝐿𝑇𝐼∅ di-

mensional basis, while Table 5 demonstrates 

the same procedure for solving this problem in 

the 𝑀𝐿𝑇𝐼 dimensional basis. Here, 𝑝 = 4,  𝑛 =
5, and 𝑟 = 3. The same final solution is ob-

tained in both tables. However, the 𝐿𝑇𝐼∅-based 

solution is obviously more efficient, entails 

simpler numbers (all of which are integers be-

longing to {−1, 0,1}), and hence it is less error 

prone, and it also detects linear dependency 

(manifested by an all-0 row) from the outset. 

The operations involved in the two tables 

include the following operations (arranged in 

decreasing complexity): floating-point row 

computation (𝑓), row summation or differenc-

ing (𝑠), row negation (𝑛), and row assignment 

(𝑎). The 𝐿𝑇𝐼∅-based solution requires 2 stages 

beyond the initial stage involving (3𝑠 + 3𝑎) 

operations. The 𝑀𝐿𝑇𝐼-based solution requires 

also 2 stages beyond the initial stage involving 

(3𝑓 + 𝑠 + 𝑛 + 2𝑎) operations.  

 
Figure 2. An electric circuit with a con-

stant current source imposed at time 0 on 

a parallel combination of a resistor and 

inductor. 

At the last stage of each solution, the 𝑝 × 𝑛 di-

mensional matrix 𝑫 would be changed to an 

𝑟 × 𝑛 matrix that is partitioned into two parts. 

The left part is an 𝑟 × 𝑟 unit matrix (shaded in 

light blue) and the right part is an 𝑟 × (𝑛 − 𝑟) 

matrix 𝑪 (shaded in dark blue). We now con-

struct a full-rank (𝑛 − 𝑟) × 𝑛 matrix 𝑲 of ex-

ponents depicting the dimensionless products 

as shown at the bottom of Table 4 and Table 5. 

This product matrix is comprised of two juxta-

positioned matrices: (a) the negative transpose 

−𝑪𝑻, an (𝑛 − 𝑟) × 𝑟 matrix (shaded in dark 

green), which is obtained by negating and trans-

posing 𝑪 (the right part of the last stage of the 

dimensional matrix after implementing the 

Gauss-Jordan algorithm, of course, after re-

moving the all-zero row), and (b) an (𝑛 −

𝑟) × (𝑛 − 𝑟) unit matrix (shaded in light green) 

[54]. The matrix 𝑲 is called the nullspace or 

kernel of 𝑫,  and is such that 𝑟𝑎𝑛𝑘(𝑲) =  (𝑛 −

𝑟) is the nullity or defect of 𝑫,  the (𝑛 − 𝑟) by 

𝑝 matrix 𝑲𝑫T is a zero matrix, and the (𝑛 − 𝑟) 

rows of 𝑲 form a basis for the nullspace of 𝑫 

[54, 62] 
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Table 3. Dimensions of individual self-dual (𝒓𝟒 = 𝟎 or 𝑹𝟑 = 𝑹𝟒 𝝐 {−𝟏, 𝟎, 𝟏}) physical quantities 

in the 𝑴𝑳𝑻𝑰 mechanically-oriented dimensional basis and the electromagnetically-oriented 𝑳𝑻𝑰∅  

dimensional basis. 

Physical Quantity Symbol The 𝑴𝑳𝑻𝑰 Dimensional Basis The 𝑳𝑻𝑰∅ Dimensional Basis 

𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 

Mass 𝑀 1 0 0 0 −𝟐 3 1 1 

Length 𝐿 0 1 𝟎 0 1 0 0 0 

Time 𝑡 0 𝟎 1 0 𝟎 1 0 0 

Wavenumber 𝑘 0 −𝟏 𝟎 0 −𝟏 0 0 0 

Frequency 𝜈 0 𝟎 −𝟏 0 𝟎 1 0 0 

Area 𝐴 0 2 𝟎 0 𝟐 0 0 0 

Volume 𝑉 0 3 𝟎 𝟎 𝟑 𝟎 𝟎 𝟎 

Moment of inertia 𝐼 1 2 0 0 𝟎 3 1 1 

(Volumetric) density (of 

mass) 

𝜌 𝟏 −𝟑 𝟎 0 −𝟓 𝟑 𝟏 𝟏 

Area density of mass 𝜌𝑠 𝟏 −𝟐 𝟎 0 −𝟒 𝟑 𝟏 𝟏 

Linear density of mass 𝜌𝑙 𝟏 −𝟏 𝟎 0 −𝟑 𝟑 𝟏 𝟏 

Specific volume 𝑣 −𝟏 𝟑 𝟎 0 𝟓 −𝟑 −𝟏 −𝟏 

Humidity 𝜂 𝟏 −𝟑 𝟎 0 −𝟓 𝟑 𝟏 𝟏 

Mass flow rate 𝑞𝑚 1 𝟎 −𝟏 𝟎 −𝟐 2 1 1 

Volumetric flow rate 𝑞 0 𝟑 −𝟏 𝟎 𝟑 −𝟏 0 0 

Velocity 𝒗 0 1 −𝟏 0 𝟏 −𝟏 0 0 

Angular velocity 𝝎 0 0 −𝟏 0 𝟎 −𝟏 0 0 

Acceleration 𝒂 0 1 −𝟐 0 𝟏 −𝟐 0 0 

Angular acceleration 𝜔𝑎 0 0 −𝟐 0 𝟎 −𝟐 0 0 

Momentum 𝒑 1 1 −𝟏 0 −𝟏 2 1 1 

 Angular momentum 𝑳 1 2 −𝟏 0 𝟎 2 1 1 

Force 𝑭 1 1 −𝟐 0 −𝟏 1 1 1 

Pressure or stress 𝑷 or 𝝈 1 −𝟏 −𝟐 0 −𝟑 1 1 1 

Dynamic viscosity 𝜇 1 −𝟏 −𝟏 0 −𝟑 2 1 1 

Kinematic viscosity 𝜇 0 2 −𝟏 0 𝟐 −𝟏 0 0 

Work or energy 𝐸 1 2 −𝟐 0 0 1 1 1 

Torque 𝑇 1 2 −𝟐 0 0 1 1 1 

Power 𝑃 1 2 −𝟑 0 0 0 1 1 

Volumetric density of en-

ergy 

𝑈 1 −𝟏 −𝟐 0 −𝟑 1 1 1 

Planck’s constant ℎ 1 2 −𝟏 0 0 2 1 1 

Gravitational constant ℎ −𝟏 3 −𝟐 0 𝟓 −𝟓 −𝟏 −𝟏 

Hubble’s constant 𝐻 0 𝟎 −𝟏 0 𝟎 −𝟏 0 0 

 

Each of the two identical versions of the matrix 

𝑲 at the bottom of Tables 4 and 5 indicates that 

there are two products: 

  𝜋1 = 𝑡𝑅/𝐿 = 𝑡/(𝐿/𝑅) and 𝜋2 = 𝑣/𝑅𝐼, which 

constitute a (non-unique) complete set of di-

mensionless products. These two products are 

called regimes for the regime variables 𝑣 and 𝑡 

[53, 70]. According to Buckingham Pi Theo-

rem, these two dimensionless products are 

related by an arbitrary function 𝛷 equated to 

zero, namely: 

𝛷 (𝜋1 , 𝜋2) = 0.        (13) 

Finally the mathematical model of the transient 

voltage 𝑣 can be stated by expressing its regime 

𝜋2 as an arbitrary function 𝛹 (to be determined 

experimentally) of the other regime, namely 

𝜋2 =  𝛹 (𝜋1).                 (14) 
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It is known (outside the scope of dimensional 

analysis, through the theory of first-order linear 

ordinary differential equations) that the func-

tion 𝛹 is a decaying exponential, namely.  

𝑣/𝑅𝐼 =  𝑒𝑥𝑝 (−𝑡/(𝐿/𝑅) ).    (14a) 

This result is usually referred to as the exponen-

tial relaxation of a first-order (single-time-con-

stant) linear circuit or a first-order linear ordi-

nary differential equation. The transients in the 

circuit in Fig. 1 are described by a single time 

constant (𝜏 = 𝐿/𝑅), where [𝜏] = [𝐿]/[𝑅] =
(𝑇∅/𝐼)/(∅/𝐼) = 𝑇, i.e., by a parameter 𝜏, 

which has the dimensions of time, indeed.  

In retrospect, we might have not insisted on tak-

ing voltage and time as regime variables. Table 

6 shows an alternative ordering of variables for 

the 𝐿𝑇𝐼∅-based solution in Table 4, in which 

the regime variables are taken (arbitrarily, and 

ignoring the problem requirements) as the in-

ductance and resistance. Here, the Gauss-Jor-

dan algorithm does absolutely nothing beyond 

constructing its initial tableau. Now, we obtain 

two products:  𝜋3 = 𝐼𝐿/𝑣𝑡 and 𝜋4 = 𝑅𝐼/𝑣 

which constitute another complete set of di-

mensionless products. This new complete set is 

related to the old one via 

𝜋3 = 1/(𝜋1 𝜋2),   𝜋4 = 1/𝜋2,    (15a) 

𝜋1 = 𝜋4/𝜋3,    𝜋2 = 1/𝜋4.       (15b) 

Table 7 shows yet another ordering of variables 

for the 𝐿𝑇𝐼∅-based solution in Table 4. Since 

the rank of the dimensional matrix is now 

known to be 3, this ordering suggests that the 

variables are partitioned into a set {𝑡, 𝐿, 𝑅} of 

basis variables and a set {𝑣, 𝐼} of regime varia-

bles. An advantage of the Gauss-Jordan algo-

rithm is that it detects the impossibility of this 

partitioning and corrects it en route. Contrary to 

widespread belief, the Gauss-Jordan algorithm 

does not necessarily partition 𝑫 into two matri-

ces such that the first of which is a unit matrix. 

Generally, the Gauss-Jordan algorithm replaces 

𝑫 by its reduced row echelon form (RREF) 

[54], an example of which is shown in the sec-

ond stage of Table 7. In this more general (al-

beit less appealing situation), the algorithm em-

ploys two correct sets of basis and regime vari-

ables as {𝑡, 𝐿, 𝑣} and {𝑅, 𝐼} by swapping the 

roles of the variables 𝑅 and 𝑣 as basis or regime 

variables. 

 

 

Table 4. The Gauss-Jordan procedure for solving the circuit problem of Sec. 6.1 in the 𝑳𝑻𝑰∅  di-

mensional basis. The final stage of matrix 𝑫 is shaded in blue (partitioned into a unit matrix in 

light blue, followed by 𝑪 in dark blue), while the matrix 𝑲 is shaded in green (partitioned into the 

negative transpose of matrix 𝑪 in dark green, followed by a unit matrix in light green). 

 

 𝑙 𝑖 𝑟 𝜏 𝑉  

 𝐿 𝐼 𝑅 𝑡 𝑣   

𝐸1
(0)  0 0 0 0 0 0 

𝐸2
(0) 1 0 0 1 0 0 

𝐸3
(0) −1 1 −1 0 0 0 

𝐸4
(0) 1 0 1 0 1 0 

𝐸2
(1) ← 𝐸2

(0) 1 0 0 1 0 0 

𝐸3
(1) ← 𝐸3

(0) +  𝐸2
(0) 0 1 −1 1 0 0 

𝐸4
(1) ← 𝐸4

(0) −  𝐸2
(0) 0 0 1 −1 1 0 

𝐸2
(2) ← 𝐸2

(1)   1 0 0 1 0 0 

𝐸3
(2)  ← 𝐸3

(1)+𝐸4
(1)   0 1 0 0 1 0 

𝐸4
(2) ← 𝐸4

(1) 0 0 1 −1 1 0 

𝜋1
 −1 0 1 1 0  

𝜋2
 0 −1 −1 0 1  
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Table 5. The Gauss-Jordan procedure for solving the circuit problem of Sec. 6.1 in the 𝑴𝑳𝑻𝑰  

dimensional basis.   

 𝑙 𝑟 𝑖 𝜏 𝑉  

 𝐿 𝑅 𝐼 𝑡 𝑣   

𝐸1
(0)  1 1 0 0 1 0 

𝐸2
(0) 2 2 0 0 2 0 

𝐸3
(0) −2 −3 0 1 −3 0 

𝐸4
(0) −2 −2 1 0 −1 0 

  𝐸1
(1) ← 𝐸1

(0)   1 1 0 0 1 0 

𝐸2
(1) ← 𝐸2

(0) − 2 𝐸1
(0) 0 0 0 0 0 0 

𝐸3
(1) ← 𝐸3

(0)+ 2 𝐸1
(0) 0 −1 0 1 −1 0 

𝐸4
(1) ← 𝐸4

(0)+ 2 𝐸1
(0) 0 0 1 0 1 0 

  𝐸1
(2) ←  𝐸1

(1) + 𝐸3
(1)   1 0 0 1 0 0 

𝐸3
(2)  ← − 𝐸3

(1)   0 1 0 −1 1 0 

𝐸4
(2) ← 𝐸4

(1) 0 0 1 0 1 0 

𝜋1
 −1 1 0 1 0 0 

𝜋2
 0 −1 −1 0 1 0 

 

Table 6. The Gauss-Jordan procedure for solving the circuit problem of Sec. 6.1 in the 𝑳𝑻𝑰∅  di-

mensional basis with an alternative ordering of variables. 

 𝜏 𝑖 𝑉 𝑙 𝑟  

 𝑡 𝐼 𝑣 𝐿 𝑅  

𝐸1
(0)  0 0 0 0 0 0 

𝐸2
(0) 1 0 0 1 0 0 

𝐸3
(0) 0 1 0 −1 −1 0 

𝐸4
(0) 0 0 1 1 1 0 

𝜋3
 −1 1 −1 1 0  

𝜋4
 0 1 −1 0 1  

 

Now, the three basis variables 𝑡, 𝐿, and 𝑣 are not 

assigned to consecutive columns, and though 

the matrix under them is, in fact, a unit matrix, 

it might not readily appear as such (due to lack 

of visual adjacency). In the lower part of Table 

7, we interchange the columns for 𝑅 and 𝑣 so as 

to place all columns with pivots consecutively 

at the left to form an identity matrix. Both parts 

of Table 7 yield the two products:  𝜋5 =
𝑡𝑅/𝐿 and 𝜋6 = 𝐼𝐿/𝑣𝑡, which constitute yet an-

other complete set of dimensionless products, 

again related to the earlier sets, since 𝜋5 and 𝜋6 

are equal to 𝜋1 and 𝜋3, respectively. The total 

number of complete sets of dimensionless prod-

ucts is at most (here strictly less than) the num-

ber of choosing two regime variables out of five 

variables (without order or repetition), which is 

ten [53]. 

The non-uniqueness of the complete set of di-

mensionless products is occasionally cited as a 

limitation of dimensional analysis [54]. 

However, we note that Eq. (14) is the desirable 

solution of the problem, and it can be reached 

in a variety of ways, such as directly from Table 

4, or via Table 6 together with Eqs. (15b). 

Results similar to those of this subsection are 

obtained by Middendorf [33] and Rushdi & 

Rushdi [57] for the dual problem in which a DC 
voltage source of value 𝑉 is imposed for time 𝑡 
≥ 0 on a series combination of a resistance 𝑅 
and a capacitance 𝐶, and wherein the transi-
ent current 𝑖(𝑡) is required. For both problems, 
the dimension of length 𝐿  is dispensable with, 
in the sense that (a) the dimensional basis 
𝐿𝑇𝐼∅ can be replaced by its 𝑇𝐼∅ subset, since 
each of the pertinent variables has a zero ex-
ponent for the dimension of length 𝐿, and (b) 
an all-0 row appears right from the outset in 
the initial stage of the Gauss-Jordan algorithm. 
Generally, for circuit problems, the 𝐿𝑇𝐼∅  
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dimensional basis (or its 𝑇𝐼∅  subset) has a def-
inite advantage.  

A very famous problem in electromagnetics is 

the problem of Coulomb, in which one seeks 

the inverse square law for the dependence of the 

far-field intensity of the electric field 𝐸 on the 

distance from the origin 𝑟, at which a point 

source is located. To demonstrate the elegance 

and power of DA solutions, we solve a general-

ization of this problem. Specifically, we give a 

DA solution of a problem that comprises six 

primitive problems, one of which is the afore-

mentioned problem of Coulomb. We will con-

sider a general electric source 𝑆, located at (or 

in the vicinity of) the origin (practically located 

at the origin under the far-field assumption). 

This source has a dimension of  [𝑆] = 𝐼 𝑇 𝐿𝑗, 

and it might be 

6.2. Far-Field Observations due to an Electric 
Source at the Origin 

1. A point electric charge (monopole) 

𝑆 = 𝑄 (𝑗 = 0, [𝑆] = 𝐼 𝑇 ), located at 

the origin (0,0,0). 
2. An electric dipole of moment 𝑆 = 𝑄𝑎 

(𝑗 = 1, [𝑆] = 𝐼 𝑇 𝐿), comprising two 

charges of equal magnitudes and op-

posite signs: a positive charge (+𝑄) lo-

cated at (𝑎/2,0,0), and a negative one 

(−𝑄) located at (−𝑎/2,0,0), where 

𝑎 ≪ 𝑟.  
3. An electric quadrupole of moment 𝑆 =

𝑄𝑎2 (𝑗 = 2, [𝑆] = 𝐼 𝑇 𝐿2), compris-

ing four charges of equal magnitudes 

and alternating signs: a positive charge 

(+𝑄) located at (𝑎/2, 𝑎/2,0), a nega-

tive one (−𝑄) at (𝑎/2, −𝑎/2,0), a sec-

ond positive charge (+𝑄) situated at 
(−𝑎/2, −𝑎/2,0), and finally another 

negative charge (−𝑄) located at (−𝑎/
2, 𝑎/2,0), where 𝑎 ≪ 𝑟.  

4. We also consider an observed quantity 

𝑂 of dimension [𝑂] =  ∅ 𝐿−𝑖 =
𝑀 𝐿2−𝑖 𝑇−3 𝐼−1, where this quantity 

can be the electric potential ∅ (𝑖 = 0), 

or the electric field intensity 𝐸 (𝑖 =
1). The variable 𝑂 must be a regime 

variable, and it is placed last in a pro-

posed dimensionless product   

5. 𝜋 = 𝑘  𝑟𝑅  𝜖𝑝  𝑆𝑠  𝑂𝑜,         (16)   

6. where 𝑘 is a dimensionless constant. 

Table 8 demonstrates the Gauss-Jor-

dan procedure for solving this problem 

in the 𝐿𝑇𝐼∅ dimensional basis, while 

Table 9 demonstrates the same proce-

dure for solving this problem in the 

𝑀𝐿𝑇𝐼 dimensional basis. The same fi-

nal solution is obtained in both tables. 

However, the 𝐿𝑇𝐼∅-based solutions is 

obviously more efficient, and hence 

less error prone, and it is, once more, 

quicker to detect an all-0 row in the di-

mensional matrix. The 𝐿𝑇𝐼∅-based so-

lution requires 2 stages beyond the in-

itial stage involving (𝑓 + 4𝑠 + 2𝑎) 

operations. The 𝑀𝐿𝑇𝐼-based solution 

requires also 2 stages beyond the ini-

tial stage involving (4𝑓 + 𝑠 + 𝑛 +
2𝑎) operations.  

7. Each of the two versions of the matrix 

𝑲 at the bottom of Tables 8 and 9 in-

dicates that there is a single dimen-

sionless product 𝜋1 =
𝑘  𝑟1+𝑖+𝑗  𝜖1  𝑆−1  𝑂1. According to 

Buckingham Pi Theorem, this product 

must be a constant, and hence the ob-

served quantity is 

8.   𝑂 =  𝑘𝑖𝑗 𝑆 /( 𝜖  𝑟1+𝑖+𝑗 ).        (17) 

9. The far field potentials ∅ due to a 

charge (𝑆 = 𝑄), a dipole (𝑆 = 𝑄𝑎), 

and a quadrupole (𝑆 = 𝑄𝑎2) are 

𝑘00 𝑄 / 𝜖 𝑟,  𝑘01 𝑄𝑎 / 𝜖 𝑟2, and 

𝑘02 𝑄𝑎2/ 𝜖 𝑟3 , respectively, while 

the corresponding far electric field in-

tensities 𝐸 are 𝑘10 𝑄 / 𝜖 𝑟2,  𝑘11 𝑄𝑎 /
 𝜖 𝑟3, and 𝑘12 𝑄𝑎2/ 𝜖 𝑟4, respectively. 

These results are in agreement with 

those derived by analytic techniques of 

electromagnetics [71]. In particular, 

we recover the celebrated inverse 

square law (𝐸 = 𝑘10 𝑄 / 𝜖 𝑟2) of Cou-

lomb. 

6.3. The leakage current through the elec-
trolyte on a wet contaminated insulator 

Piah and Darus [41] employed Dimensional 

Analysis to model the leakage current (𝐼) due to 

the electrolyte formed on a wet contaminated 

insulator. The other variables included in the 

analysis were: the electrolyte conductivity (𝜎), 

the electrolyte volumetric flow rate (𝑄), envi-

ronmental pressure (𝑃), humidity (𝐻), and the 

applied electric field (𝐸). The variable 𝐼 must 

be a regime variable [53, 54, 70], and it is 

placed last in a proposed dimensionless product   

𝜋 = 𝑘  𝜎𝑠  𝑄𝑞   𝑃𝑝  𝐻ℎ  𝐸𝑒  𝐼𝑖,          (18) 
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where 𝑘 is a dimensionless constant. The most 

important variable among the remaining varia-

bles is 𝐸, and it is placed immediately before 𝐼. 

Table 10 demonstrates the Gauss-Jordan proce-

dure for solving this problem in the 𝐿𝑇𝐼∅ di-

mensional basis, while Table 11 demonstrates 

the same procedure for solving this problem in 

the 𝑀𝐿𝑇𝐼 dimensional basis. The same final so-

lution is obtained in both tables, and it is in 

agreement with the one obtained earlier in [41]. 

However, the 𝐿𝑇𝐼∅-based solution is only 

slightly more efficient, and hence somewhat 

less error prone. The 𝐿𝑇𝐼∅-based solution re-

quires 4 stages beyond the initial stage involv-

ing (7𝑓 + 4𝑠 + 2𝑛 + 3𝑎) operations. The 

𝑀𝐿𝑇𝐼-based solution requires also 4 stages be-

yond the initial stage involving (10𝑓 + 3𝑠 +
2𝑛 + 2𝑎) operations. The computations for this 

problem are dramatically more complex than 

those in the earlier subsections, and in this case 

the dimensional matrix is of full rank. The su-

periority of the 𝐿𝑇𝐼∅-based solution is less pro-

nounced in the present case (compared with the 

cases in the earlier subsections), since the pre-

sent problem is not dominantly an electromag-

netic one. Anyhow, the superiority of the 𝐿𝑇𝐼∅-

based solutions for dominantly electromagnetic 

DA problems was extensively verified by con-

sidering such problems in many and diverse re-

cent publications [72-80]. 

In passing, we observe that the dimensional ba-

ses associated with the international system of 

units (SI system) have been claimed (criti-

cized!) to suffer from inherent redundancy [22, 

81]. 

 

 

 

Table 7. The Gauss-Jordan procedure for solving the circuit problem of Sec. 6.1 in the 𝑳𝑻𝑰∅  di-

mensional basis, repeated twice for two different orderings of variables. 

 𝜏 𝑙 𝑟 𝑉 𝑖  

 𝑡 𝐿 𝑅 𝑣 𝐼  

𝐸1
(0) 0 0 0 0 0 0 

𝐸2
(0) 1 1 0 0 0 0 

𝐸3
(0) 0 −1 −1 0 1 0 

𝐸4
(0) 0 1 1 1 0 0 

𝐸2
(1) ← 𝐸2

(0) + 𝐸3
(0) 1 0 −𝟏 0 𝟏 0 

𝐸3
(1) ← − 𝐸3

(0) 0 1 𝟏 0 −𝟏 0 

𝐸4
(1) ← 𝐸4

(0) +  𝐸3
(0) 0 0 𝟎 1 𝟏 0 

𝜋5
 𝟏 −𝟏 1 𝟎 0  

𝜋6
 −𝟏 𝟏 0 −𝟏 1  

 
 𝜏 𝑙 𝑉 𝑟 𝑖  

 𝑡 𝐿 𝑣 𝑅 𝐼  

 

1 0 0 −𝟏 𝟏 0 

0 1 0 𝟏 −𝟏 0 

0 0 1 𝟎 𝟏 0 

𝜋5
 𝟏 −𝟏 𝟎 1 0  

𝜋6
 −𝟏 𝟏 −𝟏 0 1  
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Table 8. The Gauss-Jordan procedure for solving the far-field problem of Sec. 6.2 in the 𝑳𝑻𝑰∅  

dimensional basis.   

 𝑅 𝑝 𝑠 𝑜  

 
𝑟 𝜖 𝑆 𝑂   

𝐸1
(0) 1 −1 𝑗 −𝑖 0 

𝐸2
(0) 0 1 1 0 0 

𝐸3
(0) 0 1 1 0 0 

𝐸4
(0) 0 −1 0 1 0 

  𝐸1
(1) ← 𝐸1

(0) + 𝐸2
(0) 1 0 1 + 𝑗 −𝑖 0 

𝐸2
(1) ← 𝐸2

(0) 0 1 1 0 0 

𝐸3
(1) ← 𝐸3

(0)− 𝐸2
(0) 0 0 0 0 0 

𝐸4
(1) ← 𝐸4

(0)+  𝐸2
(0) 0 0 1 1 0 

  𝐸1
(2) ←  𝐸1

(1)−(𝑗 + 1)𝐸4
(1) 1 0 0 −𝑖 − 1 − 𝑗 0 

  𝐸2
(2) ←  𝐸2

(1) − 𝐸4
(1) 0 1 0 −1 0 

𝐸4
(2) ← 𝐸4

(1) 0 0 1 1 0 

𝜋1
 1 + 𝑖 + 𝑗 1 −1 1  

 

Table 9. The Gauss-Jordan procedure for solving the far-field problem of Sec. 6.2 in the 𝑴𝑳𝑻𝑰  

dimensional basis.   

 𝑝 𝑅 𝑠 𝑜  

 𝜖 𝑟 𝑆 𝑂   

𝐸1
(0)  −1 0 0 1 0 

𝐸2
(0) −3 1 𝑗 2 − 𝑖 0 

𝐸3
(0) 4 0 1 −3 0 

𝐸4
(0) 2 0 1 −1 0 

  𝐸1
(1) ← −𝐸1

(0)   1 0 0 −1 0 

𝐸2
(1) ← 𝐸2

(0) − 3 𝐸1
(0) 0 1 𝑗 −1 − 𝑖 0 

𝐸3
(1) ← 𝐸3

(0)+ 4 𝐸1
(0) 0 0 1 1 0 

𝐸4
(1) ← 𝐸4

(0)+ 2 𝐸1
(0) 0 0 1 1 0 

  𝐸1
(2) ←  𝐸1

(1)   1 0 0 −1 0 

𝐸2
(2) ←  𝐸2

(1) −  𝑗 𝐸3
(1)   0 1 0 −1 − 𝑖 − 𝑗 0 

𝐸3
(2)  ←  𝐸3

(1)  0 0 1 1 0 

𝐸4
(2) ← 𝐸4

(1) − 𝐸3
(1) 0 0 0 0 0 

𝜋1
 1 1 + 𝑖 + 𝑗 −1 1  
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Such redundancy is manifested in many prob-

lems with electromechanical/ electromagnetic 

problems, in which the dimensional matrix in 

the 𝑀𝐿𝑇𝐼 or 𝐿𝑇𝐼∅ is not of full rank (see, for 

example, the problems in subsections 6.1 and 

6.2). However, no redundancy appears in the 

problem of our current subsection, with the di-

mensional matrix being of full rank. To miti-

gate the purported redundancy, several authors 

suggested the use of a dimensional basis of 

three fundamental quantities only [22, 81]. One 

such basis uses the three quantities of length, 

time, and energy as fundamental quantities, and 

assumes ‘voltage’ to be dimensionless [22]. 

This basis shows no redundancy in handling the 

problems of subsections 6.1 and 6.2, as it pro-

duces full-rank matrices. However, it fails to re-

produce the solution obtained herein by either 

the 𝑀𝐿𝑇𝐼 basis or the 𝐿𝑇𝐼∅ basis. 

We have demonstrated that the 𝐿𝑇𝐼∅ basis is 

the basis of choice in the matrix solution of di-

mensional-analysis problems involving pre-

dominantly electromagnetic quantities. Inter-

estingly, the basis of choice in the matrix solu-

tion of dimensional-analysis problems involv-

ing predominantly mechanical quantities is not 

the familiar 𝑀𝐿𝑇𝐼 basis, but seems to be a me-

chanical basis that is analogous to the 𝐿𝑇𝐼∅ ba-

sis. In ‘direct’ electromechanical analogy me-

chanical force 𝐹  is represented by voltage or 

potential ∅  and mechanical velocity 𝑣  by elec-

tric current 𝐼, and hence, mass 𝑀  is represented 

by inductance L, and length 𝐿  by electric 

charge 𝑄, while time 𝑇 is left intact [82-84].  

This means that the 𝑄𝑇𝑣𝐹 basis can be 

proposed as an efficient one for predominantly 

mechanical systems [64]. However, in ‘inverse’ 

or ‘indirect’ electromechanical analogy, me-

chanical force 𝐹 is represented by electric cur-

rent 𝐼 and mechanical velocity 𝑣 by voltage or 

potential ∅,  and hence mass 𝑀 is represented 

by admittance C  and length 𝐿  by magnetic flux 

Φ, while time 𝑇 is again left intact [82-84].  This 

means that the Φ𝑇𝐹𝑣 basis can be another effi-

cient one for predominantly mechanical sys-

tems. Unfortunately, the use of mass as a fun-

damental quantity in the familiar 𝑀𝐿𝑇𝐼 basis is 

analogous to using inductance or admittance as 

a fundamental quantity in an electromagnetic 

dimensional system. 

7. Conclusions 

This paper proposed a novel approach of Di-
mensional Analysis, which makes the most of 
the Gauss-Jordan algorithm through the use of 

an electromagnetically-oriented basis (the 𝐿𝑇𝐼∅ 

basis) for handling EM problems. The paper 

starts by investigating the issue of selecting fun-

damental dimensions for electromagnetics. The 

problem of transformations between the 𝐿𝑇𝐼∅ 

basis and the 𝑀𝐿𝑇𝐼 basis is subsequently ex-

plored, first by scalar techniques, and later by a 

novel application of the Gauss-Jordan algo-

rithm. We list the dimensional exponents for 
EM and non-EM quantities in both the 𝐿𝑇𝐼∅ 
and 𝑀𝐿𝑇𝐼 bases, and point out certain supe-
rior features possessed by the 𝐿𝑇𝐼∅ basis. Sev-
eral illustrative examples expose the details of 
the proposed method, and demonstrate its 
merits and effectiveness.  
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Table 10. The Gauss-Jordan procedure for expressing the leakage current of Sec. 6.3 in the 𝑳𝑻𝑰∅  

dimensional basis. 

 𝑠 𝑞 𝑝 ℎ 𝑒 𝑖  

 
𝜎 𝑄 𝑃 𝐻 𝐸 𝐼   

𝐸1
(0)  −1 3 −3 −5 −1 0 0 

𝐸2
(0) 0 −1 1 3 0 0 0 

𝐸3
(0) 1 0 1 1 0 1 0 

𝐸4
(0) −1 0 1 1 1 0 0 

𝐸1
(1)  ← −𝐸1

(0)  1 −3 3 5 1 0 0 

𝐸2
(1) ← 𝐸2

(0) 0 −1 1 3 0 0 0 

𝐸3
(1) ← 𝐸3

(0) +  𝐸1
(0) 0 3 −2 −4 −1 1 0 

𝐸4
(1) ← 𝐸4

(0) −  𝐸1
(0) 0 −3 4 6 2 0 0 

𝐸1
(2)  ← 𝐸1

(1) − 3 𝐸2
(1) 1 0 0 −4 1 0 0 

𝐸2
(2) ← −𝐸2

(1) 0 1 −1 −3 0 0 0 

𝐸3
(2)  ← 𝐸3

(1)+3 𝐸2
(1)  0 0 1 5 −1 1 0 

𝐸4
(2) ← 𝐸4

(1) − 3 𝐸2
(1) 0 0 1 −3 2 0 0 

𝐸1
(3)  ← 𝐸1

(2) 1 0 0 −4 1 0 0 

𝐸2
(3) ← 𝐸2

(2) + 𝐸3
(2) 0 1 0 2 −1 1 0 

𝐸3
(3)  ← 𝐸3

(2) 0 0 1 5 −1 1 0 

𝐸4
(3) ← 𝐸4

(2) − 𝐸3
(2) 0 0 0 −8 3 −1 0 

𝐸1
(4)  ← 𝐸1

(3)+ 4 𝐸4
(4) 1 0 0 0 −4/8 4/8 0 

𝐸2
(4) ← 𝐸2

(3) − 2 𝐸4
(4) 0 1 0 0 −2/8 6/8 0 

𝐸3
(4)  ← 𝐸3

(3) −5 𝐸4
(4) 0 0 1 0 7/8 3/8 0 

𝐸4
(4) ← 𝐸4

(3)/(−8) 0 0 0 1 −3/8 1/8 0 

𝜋1
 4/8 2/8 −7/8 3/8 1 0  

𝜋2
 −4/8 −6/8 −3/8 −1/8 0 1  
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Table 11. The Gauss-Jordan procedure for expressing the leakage current of Sec. 6.3 in the 𝑴𝑳𝑻𝑰  

dimensional basis. 

 𝑠 𝑞 𝑝 ℎ 𝑒 𝑖  

 𝜎 𝑄 𝑃 𝐻 𝐸 𝐼   

𝐸1
(0)  −1 0 1 1 1 0 0 

𝐸2
(0) −3 3 −1 −3 1 0 0 

𝐸3
(0) 3 −1 −2 0 −3 0 0 

𝐸4
(0) 2 0 0 0 −1 1 0 

𝐸1
(1)  ← −𝐸1

(0)  1 0 −1 −1 −1 0 0 

𝐸2
(1) ← 𝐸2

(0) − 3 𝐸1
(0) 0 3 −4 −6 −2 0 0 

𝐸3
(1) ← 𝐸3

(0) + 3 𝐸1
(0) 0 −1 1 3 0 0 0 

𝐸4
(1) ← 𝐸4

(0) + 2  𝐸1
(0) 0 0 2 2 1 1 0 

𝐸1
(2)  ← 𝐸1

(1) + 𝐸3
(1) 1 −1 0 2 −1 0 0 

𝐸2
(2) ← 𝐸2

(1)  + 4 𝐸3
(1) 0 −1 0 6 −2 0 0 

𝐸3
(2)  ← 𝐸3

(1)  0 −1 1 3 0 0 0 

𝐸4
(2) ← 𝐸4

(1) − 2 𝐸3
(1) 0 2 0 −4 1 1 0 

𝐸1
(3)  ← 𝐸1

(2) − 𝐸2
(2) 1 0 0 −4 1 0 0 

𝐸2
(3) ← − 𝐸2

(2)  0 1 0 −6 2 0 0 

𝐸3
(3)  ← 𝐸3

(2) − 𝐸2
(2) 0 0 1 −3 2 0 0 

𝐸4
(3) ← 𝐸4

(2) + 2 𝐸2
(2) 0 0 0 8 −3 1 0 

𝐸1
(4)  ← 𝐸1

(3)+ 4 𝐸4
(4) 1 0 0 0 −4/8 4/8 0 

𝐸2
(4) ← 𝐸2

(3) + 6 𝐸4
(4) 0 1 0 0 −2/8 6/8 0 

𝐸3
(4)  ← 𝐸3

(3) + 3 𝐸4
(4)  0 0 1 0 7/8 3/8 0 

𝐸4
(4) ← 𝐸4

(3)/(8) 0 0 0 1 −3/8 1/8 0 

𝜋1
 4/8 2/8 −7/8 3/8 1 0  

𝜋2
 −4/8 −6/8 −3/8 −1/8 0 1  
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 بواسطة مجموعة للأبعاد الأساسية معنية بالكهرومغناطيسيات د تحليل الأبعا

2و علي محمد رشدي 1مصطفى علي رشدي
 

 ،جمهورية مصر العربية جامعة المستقبل في مصر، القاهرة الجديدة، ،كلية الهندسة والتقانة1

 )حاليا معهد أبحاث الميكانيكا التطبيقية، جامعة كيوشو، فوكوكا ، اليابان(

 ، كلية الهندسة، جامعة الملك عبد العزيز ،الهندسة الكهربائية وهندسة الحاسباتقسم 2

 المملكة العربية السعودية، ،21589 ،جدة

rushdimostafa@riam.kyushu-u.ac.jp; Mostafa.Roshdi@fue.edu.eg; arushdi@kau.edu.sa} 

 

التي تستخدم الأبعاد الإسنادية للطول  و المعنية بالكهرومغناطيسيات    ط زت ج تصف ورقة البحث هذه قاعدة الأبعاد  .  المستخلص

(. ننتفع بهذه القاعدة في الحل المصفوفي لمسائل تحليل الأبعاد )ح ب(  ج)  الكهربائي  (، والجهدت)الكهربائي    (، والتيارز(، والزمن )ط )

)مقارنة   ط زت ج الجديدة   قاعدة الأبعادإن تمثيلات الكميات الكهرومغناطيسية في   التي يغلب عليها استعمال كميات كهرومغناطيسية .

(( تكسبنا معلومات أوفر وتتسم بسهولة أوضح ولها  ج ( بدلا من الجهد )ك )  )التي تستخدم الكتلة    ط زتك    المعيارية    قاعدة الأبعادمع  

جوردان  -باستخدام خوارزمية غاوسلمسائل الكهرومغناطيسيات    تحليل الأبعادخصائص مزاوجة بارزة. وفضلا عن ذلك، فإن حسابات  

الأبعاد  في   اكتشافج    ط زتقاعدة  أكثر كفاية  وأقل عرضة للأخطاء  وأسرع في  يتم    الخطي   عتمادلاا  تعد  الأبعاد.  بين معادلات 

وتعليم  تعلم  في  واضحة  بأهمية  تتمتع  كلها  توضيحية،  أمثلة  خلال  من  المقترحة  الطريقة  ومزايا  تفصيلات  من  كلا  استكشاف 

 الكهرومغناطيسيات. 

الدالة   الأبعاد،   :  الكلمات  عديمة  المضروب تحليل  والخرج ،  د ا بع الأ ات  الدخل  معنية  - ، حذف غاوس متغيرات  أبعاد  قاعدة  جوردان، 

 . تعلم وتعليم الكهرومغناطيسياتبالكهرومغناطيسيات،  
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