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Abstract: Due to high silica concentrations, silica scaling of reverse osmosis 
(RO) membranes in brackish water desalination poses serious issues with 
cost-effectiveness of desalination processes. The advanced Fenton process 
(AFP) is one of the most effective water treatment processes. Coagulation of 
silica with ferric hydroxide and flocculation are the main processes used to 
remove silica. This process depends on several operating parameters such as 
hydrogen peroxide and zero-valent metal iron Fe0 dosage, initial and 
equilibrium pH. In this study, we examined the use of Artificial Neural 
Networks (ANNs) to optimize those parameters using an experimental 
dataset. For a removal of 71.3%, the optimum operating parameters were: 
initial pH 2, equilibrium pH 8, iron dosage 15 g/L and hydrogen peroxide 18 
mM. This study demonstrates the economic feasibility of the environmentally 
friendly Fenton process, achieving up to 71.2% silica removal at a total cost 
of $2.09 m-3 for a typical 1,000 m3/day desilication unit. 
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1. Introduction 
Water resources in most arid countries 
come from the desalination of seawater 
and brackish underground water from deep 
non-renewable sedimentary aquifers [1]. 
Before use, these waters must be 
desalinated. The most widely used 
treatment method is reverse osmosis (RO) 
using semi-permeable membranes to trap 
dissolved salts [2, 3]. 
 
Silica, orthosilicic acid, Si(OH)4, originates 
from the chemical weathering of silica-

containing minerals such as quartz and 
feldspar [4]. Its concentration in brackish 
water is high. During RO desalination, it 
does not diffuse through the membrane, 
clogging the latter. This will cause its 
refractory deposit on the RO membrane 
during desalination [5], posing a major 
challenge to the cost-effectiveness of 
freshwater production. However, 
desilication is relatively expensive, 
accounting for up to 80% of a water 
treatment plant's operational cost [6]. 
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There are several different treatment 
methods for removing silica, including 
coagulation with metal hydroxides [7, 8], 
flocculation [9], nanofiltration [10], and 
utilizing the use of anti-scaling agents [11]. 
Throughout the last few decades, advanced 
oxidation processes have demonstrated 
their great effectiveness in water treatment 
procedures [12-16]. One of the main 
advanced oxidation treatment methods is 
the Fenton process, which involves the 
generation of hydroxyl radicals (OH•) [17].  

 
The efficacy of the Fenton process for the 
degradation of organic compounds 
decreases at both high and low pH values. 
Furthermore, the Fenton reaction system is 
subject to various competitive reactions that 
can hinder its effectiveness. In the case of 
Fenton oxidation, the rate of reaction is 
influenced by the dosage of iron, while the 
extent of mineralization is directly 
proportional to the concentration of the 
oxidant. The main disadvantages of the 
Fenton process are the relatively high cost 
of H2O2 and the large amount of ferric 
sludge produced in the neutralization step 
of the treated solution before disposal.  
This study aims to use artificial intelligence 
(AI) to optimize the parameters involved in 
the reaction to achieve the highest silica 
removal possible. This approach is 
becoming common in many research fields 
[21-23] and gained interest in water 
treatment research in recent years [24-27]. 
The AI model will be based on artificial 
neural networks (ANNs) to optimize the 
parameters. It can also help us minimize the 
cost of the treatment operation by showing 
if the use of H2O2 can be reduced while 
optimizing the other parameters without 
compromising water treatment quality.  
ANNs can be used for multiple tasks, 
including classification, regression, and 
prediction. In the case of prediction, ANNs 
can be trained on a dataset of historical data, 
and then used to make predictions about 
future data. 

To use an ANN for prediction, the model is 
first trained on a labeled dataset with a 
process known as backpropagation. During 
training, the model adjusts its weights and 
biases to minimize the difference between 
its predicted and actual output in the 
training dataset. Once the model is trained, 
it can be used to make predictions on new, 
unlabeled data. 
The model developed in this work can also 
help us minimize the cost of the treatment 
operation by showing if the use of H2O2 can 
be reduced while optimizing the other 
parameters without compromising water 
treatment quality. 
 
2. Materials and methods 
2.1 Removal mechanisms of the Fenton 
process. 
Under acidic conditions, the advanced 
Fenton process uses the oxidation of 
metallic iron 
and hydrogen peroxide, H2O2, to generate 
ferric ions to generate the hydroxyl free 
radical OH• [18,19]:  
Fe  + 2 H+ → Fe2+ + H2  

Fe2+ + H2O2 → Fe3+  + OH• + OH– 
After its hydrolysis 

Fe3+  + 3 H2O → 3 H+  + Fe(OH)3 
ferric hydroxide is known to coagulate on 
the silica by weak van der Waals attraction 
to form a silico-ferric hydro-complex [20], 
which is then removed from the bulk by 
settling or filtration:  

Fe(OH)3   + Si(OH)4 →  
[SiO2  ̶  Fe(OH)3]  +  2H2O 

 
Figure 1 presents a simplified 
representation of a potential treatment 
pathway for brackish water desalination 
utilizing the Fenton process. Influent water 
first encounters a potential pH adjustment 
stage. By altering the pH (often to a slightly 
acidic range), silica solubility can be 



55 Modeling and optimizing electro Fenton process for silica removal to prevent RO membrane 
fouling in brackish water desalination 

 

 

manipulated, promoting its precipitation or 
improving its interaction with products of 
the Fenton reaction. Hydrogen peroxide 
(H₂O₂) is then introduced, and iron (Fe) 
catalysts trigger the reaction, generating 
hydroxyl radicals (OH•) degrading organic 
matter and contaminants. These highly 
reactive radicals, along with the potentially 
adjusted pH, can promote the precipitation 

or coagulation of dissolved silica from the 
brackish water. Following this 
pretreatment, further purification steps like 
filtration or reverse osmosis (RO) remove 
the targeted salts (ions) and any remaining 
silica particulates, ensuring the desalinated 
water meets specific quality requirements. 
 

  

 
 

Figure 1: Cycle of the Fenton brackish underground water desilication and the use of 
permeate water. 

 

2.2 Artificial neural networks (ANNs) 
ANNs are a machine learning model 
inspired by the structure and function of the 
human brain. ANNs consist of 
interconnected nodes, or neurons, organized 
into layers. Information flows through the 
network from the input layer, through one 
or more hidden layers, and finally to the 
output layer. Each neuron in the network 
receives inputs from other neurons and 
processes them to produce an output signal 
passed on to the next layer. The architecture 
of an ANN can vary widely depending on 

the specific task and the data used. 
However, some common types of layers are 
often used in ANNs: 
1. Input layer: This is the first layer of 

the network and consists of neurons 
that receive input data. 

2. Hidden layer: This layer processes the 
input data and performs computations. 

3. Output layer: This is the final layer of 
the network and produces the 
predicted output based on the 
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computations performed by the hidden 
layer. 

Other important terms of the ANN are the 
weights, bias, and activation function. 
Weights are the parameters that determine 
the strength of the connections between 
neurons. During training, the ANN adjusts 
these weights to optimize the model 
performance. A bias is an additional 
parameter in an ANN that allows the 
network to shift the output of a neuron. 
Without a bias, the output of a neuron would 
always be zero when the input is zero. By 
adding a bias, the neuron can output a non-
zero value even when the input is zero. Like 
weights, biases are adjusted during training 
to optimize performance. The transfer 
function, also known as the activation 
function, is a mathematical function applied 
to the output of each neuron in an ANN. The 
activation function determines whether the 
neuron should "fire" based on its input. 
Commonly used activation functions 
include the sigmoid function, the rectified 
linear unit (ReLU) function, and the 
hyperbolic tangent function. The choice of 
transfer function depends on the specific 
task and the properties of the data being 
used. 

2.3 Dataset 
The dataset used was obtained from the 
study by Djouider and Aljohani [20]. The 
study used the advanced Fenton process for 
the treatment of silica in underground raw 
water samples from the Buwaib water 
desalination plant near the capital city 

of Riyadh, Saudi Arabia. The input 
parameters were the initial pH, H2O2 
concentration, Fe concentration, 
equilibrium pH, and the processing time in 
hours. The output measured was the silica 
removal percentage. There were 57 dataset 
entries for our model. The dataset is 
provided on GitHub [28]. 

 
2.4 ANN architecture 
Our investigation employed the MATLAB 
R2020a platform to generate a customized ANN 
model. Specifically, we utilized the "nftool" app 
integrated into MATLAB to construct a type of 
ANN called a feed-forward network with one 
hidden layer (shallow network). The ANN 
model was established with a few neurons in the 
input, output, and hidden layer. The ANN 
architecture comprised an input layer with 
neurons equivalent to the number of 
independent input variables (5), an output layer 
with neurons corresponding to the single output 
(silica removal), and a single hidden layer. 

The output of the ANN model can be 
described by the following function: 

𝑦 = 𝑓!(∑ 𝑤'"(𝑓1∑ (𝑤#"𝐼# + 𝑏")) + 𝑏)#"                                       
(1) 
Where y, f, w, I, and b are the output, activation 
function, weight, input, and bias value, 
respectively. The letters n and m represent the 
order of the inputs, weights, and bias values, as 
shown in Figure 2. Table 1 summarizes the 
features of the ANN models that were tested 
and the percentage of data allocated for 
training, validation and testing. 
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Figure 2: ANN model architecture. 

 

 

 

         Table 1: ANN model parameters and training settings. 
Parameter/Setting Symbol Value 

Input layer size I 5 

Output layer size Y 1 

Hidden layer size H 2 to 4 

Activation function for the 
hidden layer 

f1 Sigmoid 

Activation function for the 
output layer 

f2 Linear 

Training function -- Levenberg-Marquardt, Bayesian regularization, 
and scaled conjugate gradient function 

Performance measuring 
function 

-- MSE 

Training dataset percentage -- 70% 

Validation dataset percentage -- 15% 

Test dataset percentage -- 15% 
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2.5 Network training 
In this study, training a shallow neural 
network involves finding the weights and 
biases that produce computed outputs close 
to the observed target values for the training 
data set. The 'train' function was used to 
develop models using batch training, where 
all input vectors are presented to the 
network in one epoch (run) of training. The 
weights are updated after calculating the 
mean square error (MSE) at the end of the 
run. Available data was divided into three 
sets: training, validation, and testing, with 
70%, 15%, and 15% of the data given to 
each set respectively. The best-performing 
algorithm was selected based on trial and 
error by testing three backpropagation 
algorithms (training algorithms) for several 
runs. The model performance was 
evaluated using the R2 value and the MSE. 

𝑅! = ∑ (&'!(&))"!
∑ (&!(&))"!

                           (2) 

𝑀𝑆𝐸 = +
#
∑ (𝑦, − 𝑦2)!#
,-+               (3) 

Where 𝑦,, 𝑦2,, and 𝑦3	are the experimental 
value, the predicted value, and the mean 
value respectively. 
 

 
 

3. Results and discussion 
3.1 Model development results and 
regression analysis 
Nine feed-forward models were 
constructed by varying the training function 
and the number of nodes in the hidden 
layer. The training functions were the 
Levenberg-Marquardt function, the 
Bayesian regularization function, and the 
scaled conjugate gradient function. The 
nodes in the hidden layer ranged from 2 to 
4. The first and second activation functions 
(f1 and f2) remained fixed as a sigmoid and 
linear function, respectively. 
Table 2 shows the maximum performance 
for the ANN models by varying the training 
functions and the number of nodes in the 
hidden layer. 
From trial and error over several runs for 
each case, the best model was found to have 
an R2-value of 99.12% using the 
Levenberg-Marquardt function with 3 
nodes in the hidden layer. 
Figure 3 shows the regression analysis for 
the training, validation, test, and all three 
combined. The plots illustrate an excellent 
fit of the actual silica removal results with 
the prediction of the model in all three sets 
with 99% and above. 
 

Table 2: Models parameters and performance metrics. 

Model Training 
function 

Hidden 
layer 
activation 
function 

Output layer 
activation 
function 

Hidden 
layer 
nodes 

MSE 
Test R Test 

1 Levenberg-
Marquardt 

 
 
 
 
Sigmoid 

 
 
 
 
Linear 

2 43.114 0.967 
2 3 16.197 0.991 
3 4 18.427 0.990 
4 Bayesian 

Regularization 
2 41.838 0.980 

5 3 41.062 0.985 
6 4 45.606 0.981 
7 Scaled 

Conjugate 
Gradient (SCG) 

2 59.041 0.948 
8 3 75.446 0.959 
9 4 19.966 0.989 
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Figure 3: Regression analysis for the training, validation, and test sets. 

 

Figure 4 shows the performance of the 
training, validation and test sets. The three 
curves represent the model's performance 
on the training data (blue), validation data 
(green), and test data (red). Notably, the 
best validation performance is achieved at 
epoch 18. Although the validation curve 
(green) doesn't exhibit a clear plateau 
before this point, all three curves converge 
around epoch 18, suggesting the model has 
learned the underlying trend and 
generalizes reasonably well to unseen data. 
The small and consistent gaps between the 
curves further indicate that the model's 
performance on the training data translates 
effectively to unseen data on the validation 
and test sets. The test set performance (red) 
is slightly lower than the validation 
performance (green), as expected for 
unseen data. This convergence of 
performance curves and the small gaps 
between them provide evidence for the 
model's successful generalization. 

3.2 Absolute difference and ANOVA 
results  
Calculating the absolute difference between 
the actual and predicted removal results 
showed that the highest variance in the 
prediction was 9.6 away from the actual 
removal percentage. Most prediction results 
(51 out of 57) were only 0-3.2% more or 
less than the actual results (Figure 5). The 
result of the ANOVA test is demonstrated 
in Table S1. The F value was 0.006, 
indicating with a 95% level of confidence 
that there is no significant difference 
between the actual and predicted values. 
The results suggest that the model can 
predict the outcome of the Fenton process 
for removing silica with high accuracy. The 
algorithm and weights can be found on 
GitHub [23] for ease of access for future 
users. 
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Figure 4: Best Validation performance showing MSE results of the training, validation, 

and test sets. 
 

 
Figure 5: Absolute difference between actual and predicted results. 

 
3.3 Data extrapolation 
The model was used to extrapolate silica 
removal results for a range of values for 
each parameter; for more details refer to 
Table S2. The model predicted 11,700 
results in total. 
The maximum silica removal from the 
experimental process was 72.5%. This 
result was achieved using the following 
values, initial pH: 2, equilibrium pH: 8, 

H2O2: 15 mM, Fe: 8 g/L, and time: 3.5 hr. 
As the original experiments tested the 
removal for up to 3.5 hours, it was 
interesting to know if increasing the time 
would significantly increase the process 
output. Figure 6 shows how the model 
predicted the results with increasing time. 
There is no significant difference in 
removal in increasing the Fenton process 
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time, as it will delay water production and 
reduce profits for a water treatment plant. 
Next, the varying concentrations of H2O2 
and Fe were studied while the remaining 
parameters remained constant as follows, 
initial pH: 2, equilibrium pH: 8, and time: 5 
hr. Figure 7 shows how the results were 
predicted. Most of the results were 
comparable, ranging from around 69% to 
just above 71%. Only when the 
concentration of H2O2 was about 18 to 20 
mM and the Fe was around 8 to 10 g/L did 

the removal start to do drop until it reached 
52%. 
From these results, one can conclude that 
even if the H2O2 and Fe concentration and 
the treatment time increased, the removal of 
silica will not increase, and so it is 
recommended not to add any extra 
expenses to the process by adding more 
volumes of these materials or time, as it will 
not increase its efficiency. 

 

 
Figure 6: Extrapolation of silica removal with time using the same parameters that gave the 
optimum result in the actual experiment. Not much improvement is expected with increasing 
time. 

 
Figure 7: Silica removal with varying Fe and H2O2 quantities, initial pH: 2, equilibrium 

pH: 8, and time: 5 hr.
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3.4 Cost analysis  
The process cost is a major concern for 
water treatment stockholders. Pretreatment 
chemicals, labor, and maintenance costs 
were considered in calculating the overall 
treatment cost. If municipal stabilization 
ponds are considered, the discharge of 
sludge cost is relatively low compared to 
other disposal systems. The operational 
cost, in terms of the price of silica removal 
per cubic meter of raw water treated ($ m-

3), can be calculated as: 

 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡 = 

𝑎 × 𝐶𝐶 + 𝐿𝐶 +𝑀𝐶					 (4) 

𝑎: cost of chemical ($/kg), 𝐶𝐶 is the 
chemical consumption (in kg.m−3), 𝐿𝐶 is 
the labor cost, and 𝑀𝐶 is the maintenance 
cost. 
The cost was calculated based on the 
wholesale prices in the Middle East region 
at the time of writing this article. The lowest 
cost was $2.58/m3. Table 3 shows the 
quantities needed for H2O2 and Fe. 
 

 

Table 3: Chemical values for best removal results and lowest cost for Silica removal. 
Initial 
pH  

Equilibrium 
pH 

H2O2 

mM 

Fe 

g/L 

Time 

Hr. 

Removal Prediction (%)  Cost (U.S. Dollars)/ 
m3 

2 8 18 15 5 71.29 2.58 

2 8 16 11 5 71.21 2.09 

 
Assuming treating 1,000 m3/day for 365 
days, a treatment station will save $178,850 
annually if it spends $2.09/m3 compared to 
$2.58/m3, without compromising removal 
efficiency. 

 
Labor cost: If three workers are to run this 
unit, with an average monthly salary of 
$1500 each, the labor cost would be 
$54,000/ year. Other costs: Other 
maintenance costs (spare parts, 
pumps…etc.) are included in the capital 
cost and would be $0.5/m3 [29].  
For a typical small desilication unit treating 
1,000 m3/day, the total annual cost of 
spending $8.2/m3 on chemicals will be:  
$54,000 + $(2.09 x 1000 x365) + $(0.5 x 
1000 x 365) ≈ $999,350/year. 

 
4. Conclusion 
An Artificial Neural Network model was 
developed to optimize the parameters for 
silica removal. The dataset consisted of 57 

entries, with input parameters including 
initial pH, H2O2 concentration, Fe 
concentration, equilibrium pH, and 
processing time in hours, while the output 
measured was the silica removal 
percentage. 
The ANN architecture employed a feed-
forward network with one hidden layer, 
comprising an input layer with 5 neurons, 
an output layer, and a few neurons in the 
hidden layer. The optimized operating 
parameters for a silica removal of 71.3% 
were determined to be initial pH 2, 
equilibrium pH 8, iron dosage of 15 g/L, 
and hydrogen peroxide concentration of 18 
mM. 
The model's predictions indicated that 
increasing the processing time did not 
significantly affect the silica removal, 
suggesting that prolonging the Fenton 
process could lead to decreased water 
production and reduced profits for a water 
treatment plant. Furthermore, varying 
concentrations of H2O2 and Fe while 
keeping other parameters constant showed 



63 Modeling and optimizing electro Fenton process for silica removal to prevent RO membrane 
fouling in brackish water desalination 

 

 

that the silica removal did not increase 
significantly with higher concentrations of 
these substances. 
The model's findings are valuable as they 
provide insights into optimizing the Fenton 

process parameters for efficient silica 
removal, potentially reducing costs 
associated with water treatment operations 
without compromising water quality. 

 
 

5. Limitations. 

The dataset used was small and more data is needed to generalize the model to a wider range 
of values.  

6. Future Work. 

In the future, the predictions will be tested with actual experiments to confirm the model's 
reliability. 

7. Funding. 

This research received no external funding. 
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 .ةحلاملا هایملا ةیلحت يف ءاشغ ثولت عنمل اكیلیسلا ةلازلإ ةیئابرھكلا نوتنفلا ةیلمع نیسحتو ةجذمن
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 يف )RO( يسكعلا حضانتلا ةیشغأ يف اكیلیسلا رشقت نإف ،اكیلیسلا نم ةیلاعلا تازیكرتلا ببسب :صخلم
 نوتنف ةیلمع دعت .هایملا ةیلحت تایلمع ةفلكت ةیلاعفب قلعتی امیف ةریطخ تلاكشم حرطی ةحلاملا هایملا ةیلحت
 كیدیدحلا دیسكوردیھ عم اكیلیسلا رثخت .ةیلاعف هایملا ةجلاعم تایلمع رثكأ نم ةدحاو )AFP( ةمدقتملا
 لثم لیغشت لماوع ةدع ىلع ةیلمعلا هذھ دمتعت .اكیلیسلا ةلازلإ ةمدختسملا ةیسیئرلا تایلمعلا يھ دبلتلاو
 يف .ةینزاوتلاو ةیلولأا ةضومحلا ةجردو ،0Fe ؤفاكتلا رفص دیدحلا ندعم ةعرجو نیجوردیھلا دیسكوریب
 تاملعملا كلت نیسحتل )ANNs( ةیعانطصلاا ةیبصعلا تاكبشلا مادختسا صحفب انمق ،ةساردلا هذھ
 مقرلا :يھ ىلثملا لیغشتلا تاملعم تناك ،%71.3 ةلازلإ .ةیبیرجت تانایب ةعومجم مادختساب
 نیجوردیھلا دیسكوریبو رتل / مج 15 دیدحلا ةعرج ،8 ينیجوردیھلا مقرلا نزاوت ، يلولأا ينیجوردیھلا

 لصی ام ةلازإ تققح ثیح ،ةئیبلل ةقیدصلا نوتنف ةیلمعل ةیداصتقلاا ىودجلا ةساردلا هذھ حضوت .ملم 18
 ةردقب ةیجذومنلا تاكیلیسلا ةلازإ ةدحول 3م رلاود 2.09 اھردق ةیلامجإ ةفلكتب اكیلیسلا نم %71.2 ىلإ

 .موی/3م 1000
 
 ةیبصعلا تاكبشلا ،يعانطصلاا ءاكذلا ،هایملا ةیلحت ،اكیلیسلا ةلازإ :ةیحاتفملا تاملكلا
 


