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Abstract. Diatoms are photosynthetic organisms that can produce lipids in large amounts within a 

short time. Their biomass can be processed into biofuels and other valuable commercial products. 

In this research, six diatom species were isolated from Malaysian water (seawater and freshwater) 

and grown under the same conditions to observe differences in their lipids and fatty acids 

composition. The results showed significant differences in total lipid contents between freshwater 

and marine species. Where Sellaphora pupula, Nitzschia palea, and Craticula cuspidata 

(Freshwater species) had a relatively constant percentage of lipid (13 to 16.1 % of dw) while 

Nitzschia sp. Chaetoceros calcitrans, and Nitzschia sigma (marine species) had high lipid contents 

(>18 %). Twenty-eight of different fatty acids were detected in six diatoms studied. Palmitoleic 

acid-C16:1 (29.9 to 39.5%) and Palmitic acid-C16:0 (15.6 to 33.2%) was predominant in most of 

the six diatoms. In addition, ω-3 and ω-6 PUFA showed a high percentage in some marine and 

freshwater species (Nitzschia sp. and C. cuspidata), which suggested both species had a good 

quality of polyunsaturated fatty acid and could be used as food sources in aquaculture or in other 

useful applications. 
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1. Introduction 

Diatoms are unicellular organisms that have the 

ability to conduct photosynthesis, with 

characteristic silica cell walls. There are more 

than 80,000 strains of diatoms ranging in size 

between 4 and 200 µm (Sheehan et al., 1998; 

Levitan et al., 2014), and they constitute one of 

the bigger groups of eukaryotic phytoplankton 

in marine water but also found in freshwater. 

Their growth depends on the availability of 

light, nutrients (N, P, and Si), dissolved carbon 

dioxide, and trace metals (De Baar et al., 1999). 

Diatoms have pulled expanding consideration 

for their potential to produce various bioactive 

compounds and fine chemicals for industrial 

applications (Vinayak et al., 2015). For 

example, diatoms are rich in pigments such as 

carotenoids that are broadly connected to 

nourishment supplements and feeds, 

pharmaceutical ingredients, and beauty care 

products (Vilchez et al., 2011; Fu et al., 2015). 

In addition, diatoms can produce lipids in large 

amounts within a short time and the average 

lipid content under normal conditions could 

reach 25% of dry weight (Levitan et al., 2014). 

While lipid content may increase considerably 

(doubles) when the cells are subjected to 

unfavorable culture conditions, such as light 

intensity, salinity, temperature, nutrient 

starvation, and carbon dioxide (Qin, 2005; Hu 

et al., 2008; Chiu et al., 2009; Widjaja et al., 
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2009). Moreover, the main fatty acid content in 

diatoms is (14:0), palmitic acid (C16:0), 

palmitoleic acid (C16:1n-7), DHA, and EPA 

(Ying et al., 2000; Jiang et al., 2016) and these 

fatty acids play important roles in biofuel 

production as wile as human and animal health. 

In literature, much attention has been given to 

the comparison of lipid and fatty acid contents 

as individual species under different 

environmental conditions, for example, genus 

Nitzschia spp and Chetoceros spp (Raghavan et 

al., 2008; Griffiths and Harrison, 2009; Abdel-

Hamid et al., 2013; Scholz and Liebezeit, 2013; 

Chagoya et al., 2014; Jiang et al., 2014; Fuad et 

al., 2015). However, few studies have been 

published on the comparison of lipid and fatty 

acids content as a group of marine and 

freshwater microalgae. In this research, six 

diatom species were isolated from Malaysian 

water (seawater and freshwater) and grown 

under the same conditions to observe 

differences in their lipid and fatty acid 

composition. 

2. Materials and Methods 

1.1 Isolation and identification of microalgae 

2.972528, 101.782167 

Freshwater diatoms (Sellaphora pupula, 

Nitzschia palea, Craticula cuspidata) were 

isolated from the freshwater pond near the 

Melor Park in Kajang, Selangor, Malaysia 

(2°58'21.1"N101°46'55.8"E) and marine 

diatoms (Nitzschia sigma, Nitzschia sp.) were 

isolated from Pulau Pangkor coast, Malaysia 

(4°14'10.5"N 100°32'40.8"E). Chaetoceros 

calcitrans (UPMC-A0010) was obtained from 

the Microalgae Culture Collection of Marine 

Biotechnology Laboratory, Institute of 

Bioscience, University Putra Malaysia. Two 

techniques were used to obtain pure microalgal 

strains: streak plate and micropipette 

(Andersen, 2005). Pure microalgal strains were 

incubated under controlled conditions 

(light/dark cycle 12/12 hour with photon 

densities between 60 to 75 µmol photons m-2 s-

1 at 25°C) and used as pure algae stock. All 

isolated species were identified by field 

emission scanning electron microscopy 

(FESEM) after removing organic material from 

the frustule and dehydrated as described in 

Jiang et al. (2015). The key characteristics of 

diatom species were visible by scanning 

electron microscopy including frustule shape, 

arched valves, and raphe structure.   

2.2 Culture and Determination of Growth Rates 

Three replicates from each species were 

grown in 500 ml Erlenmeyer flasks containing 

300 ml sterilized medium. Wright Chu (WC) 

medium (Guillard and Lorenzen, 1972) was 

used to culture freshwater diatoms with slight 

modification to culture marine diatoms 

(Sodium Chloride was added to the WC 

medium to change salinity to 30 ‰). All 

cultures were incubated under light: dark cycle 

(12/12 hour) with photon densities between 100 

and 125 µmol m-2 s-1 for 24 days at 25°C (Figure 

1), pH was not controlled but ranged from 7.5 

to 8.5. Spectrophotometer (UV-VIS 1601, 

Shimadzu, Japan) at 750 nm was used to 

determine cell density every two days and, the 

growth was expressed as specific growth rate 

(per day) of the exponential growth phase using 

the equation (Nunez and Quigg, 2016). 

μ=1/T (lnNt+1−lnNt)                                 

Where Nt is the optical density at the start; 

Nt₊₁ is the optical density at the end, and T 

is the number of days between two 

measurements. In addition, Doublings 

time (days) of microalgae was calculated 

once the specific growth rate (µ) was 

known. 

   Doubling time (days) =  
0.6931

µ
  

2.3 Lipid Extraction 

 Total lipid was assessed by using the 

colorimetric method (Marsh and Weinstein, 
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1966). Once the cultures reached the stationary 

phase, duplicate samples of each culture were 

harvested by centrifugation (at 3000g for 5 min) 

and then dried by freezing- dry at -50°C under 

vacuum for 48 hours. Five milligrams of 

Freeze-dried cells was homogenized in the test 

tube with 1 ml of the chloroform-methanol 

mixture (a ratio 1:2 v/v). Glass beads were 

added to the sample and vortexed for 3 minutes. 

The sample was placed into a water bath for 3 h 

at 60 °C, then centrifuged at 3000 rpm for 5h 

and, the supernatant was transferred into a new 

test tube. The pellet was re-extracted by adding 

3.5 ml of chloroform-methanol mixture. To 

separation of lipids from the supernatant 3 ml 

of chloroform-water mixture (a ratio 1:1 v/v) 

was added. Lipid (non-polar phase) was 

transferred by glass Pasteur pipette to a 

rotavapor flask and, dried in a rotary 

evaporator, then re-suspended in 1 ml of 

chloroform. Different concentrations of 

standard lipid solution (0.05, 0.2, 0.4, 0.6, 0.8, 

and 1.0 µg/ml) were prepared from stock 

solution (0.3 mg/ml-1 in chloroform). The 

Sample (200µm), blank (200µm of 

chloroform), and standard solutions (200µm) 

were evaporated by putting them in a dryer 

under vacuum. Two milliliter of H2SO4 was 

added and vortexed, then the sample was heated 

using a thermos block at 200 °C for 15 min. 

After cooling at room temperature, 3 ml of 

distilled water was added and mixed well by 

inversion. Finally, a Spectrophotometric (at 375 

nm) was used to quantify lipids from calibration 

curves of each sample with different 

concentrations of Standard Lipid Solution using 

a polynomial line. The lipid content was 

calculated as the % dry weight of biomass. 

2.4 Fatty acid Extraction and Transesterification 

Fatty acid methyl esters (FAMEs) were 

extracted from diatoms according to 

Abdulkadir and Tsuchiya (2008). About 300mg 

±1 of the sample was dissolved in 4 ml of 

hexane in the test tube, 2 ml of 14% BF3 in 

methanol was added. The empty part of the test 

tube was filled with nitrogen gas and placed 

into a water bath at 100 C⁰ for 120 min with 

vortexing every 5 min. After cooling in an ice 

bath, 1 ml of hexane and 2 ml of MilliQ water 

were added, vortexed for 1 minute, and 

centrifuged for 3 min at 2500 rpm. Two phases 

were formed. The upper phase containing the 

hexane and free fatty acid methyl esters 

(FAMEs) was used for fatty acid analysis. 

2.5 Fatty Acids Analysis  

Fatty acids were analysed using Gas 

Chromatography-Mass spectrometry (GCMs). 

One microliter (μL) of sample was run by an 

auto-sampler injector (Agilent Technologies 

7693) and an HP88 column (100 m × 0.250 mm 

internal diameter, 0.25 μm film thickness, J&W 

Scientific, Agilent Technologies, USA). 

Helium was used as the carrier gas at a flow rate 

1ml/min. The injector temperature was 

operated at 250 ◦C. The oven temperature was 

programmed at 150 °C for 5 min, at a heating 

rate of 4 °C/min, and to 240 °C for 15 min, at a 

heating rate of 4 °C/min.  Run Time 42.5. The 

FAMEs were identified by comparison 

retention times and mass spectra of authentic 

standards and available spectra in mass spectral 

libraries, and analysed with the software MSD 

(Agilent Technologies 5975 C triple axis 

detector). Total fatty acid (TFA) content was 

determined as the sum of all FAMEs in the 

sample and individual fatty acids (FA) are 

expressed as percent of total fatty acid.  

2.6 Statistical Analysis  

Shapiro-Wilk test was used to check 

normality. Differences in lipid and fatty acids 

were performed using one-way ANOVA. 

Significant differences among the different 

species were determined using Tukey’s post-

hoc test at a 0.05 level of probability. All 

statistical analysis was done using IMB SPSS 

statistics 22.  
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3. Results and Discussion 

3.1 Identification of Diatoms   

Scanning electron microscope (SEM) for 

six diatoms studied are shown in figure 2. SEM 

allowed identification of the six diatoms as 

Sellaphora pupula, Nitzschia palea, Craticula 

cuspidata, Nitzschia sigma, Nitzschia sp. and 

Chaetoceros calcitrans.  

3.2 Growth Rate   

As shown in Figure 3, the exponential 

growth phase of freshwater diatom was seen 

from day 0 to 12 and the stationary phase from 

day 12 to 24, while the exponential growth 

phase of marine diatom was seen from day 0 to 

8 and the stationary phase from day 8 to 24. 

Specific growths of diatoms are shown in 

Table 1. C. calcitrans, Nitzschia sp., and N. 

sigma (marine diatom) had higher growth rates 

(µ), 0.33 to 0.55 per day   and, doubling time 

from 1.2 to 2.1 days. While S. pupula, N. palea, 

and C. cuspidata (freshwater diatoms) grew 

slower with growth rates 0.14 to 0.25 per day 

and doubling time of 2.7 to 4.9 days. The 

difference between species in growth rate is 

normal because each species has a different 

growth rate. In the present investigation, the 

growth rate of C. calcitrans was similar as 

reported by Miller et al. (2012), but N. palea 

was less than the growth as reported by Abdel-

Hamid et al. (2013). In contrast, Nitzschia sp. 

in this study had higher growth than another 

species of Nitzschia studied by (Chagoya et al., 

2014; Jiang et al., 2014; Demirel et al., 2016). 

This difference between studies on the same 

type may be due to differences in culture 

conditions. For both C. cuspidata and N. sigma 

there was no data reported about the growth rate 

in previous studies. 

3.3 Total Lipid Contents   

The total lipid of six diatoms studied 

shone in Table 2. There was a significant 

difference (P<0.05) in the total lipid production 

between marine and freshwater diatoms. The 

highest lipid content was observed in Nitzschia 

sp. 28%, followed by C. calcitrans 19% and N. 

sigma 18.7% dw (marine diatoms). On the other 

hand, S. pupula, C. cuspidata and N. palea 

(freshwater species) had lipid contents of less 

than 16.5% dw). Rodolfi et al. (2009) reported 

similar results and found that marine micro-

algae species including diatoms had higher lipid 

contents than freshwater species. As individual 

species, Nitzschia sp. recorded the highest 

percentage of lipid contents (28.0% dw), 

followed by C. calcitrans (19.2% dw), N. sigma 

(18.7% dw), N. palea (16.1% dw) and S. pupula 

(16% dw). These values were different from 

Nitzschia sp. (31% dw) as reported by Demirel 

et al. (2016), C. calcitrans (23.0% dw) as 

reported by Velasco et al. (2016) and N. palea 

(20.1% dw) as reported by Abdel-Hamid et al. 

(2013) and S. pupula (19.52% dw) as reported 

by Moreno et al. (2013). However, the 

accumulation of lipids in microalgae cells is 

dependent on many factors such as culture 

nutrients, and physical condition (Banerjee et 

al., 2011; Sharma et al., 2012; Gifuni et al., 

2019; Udayan et al., 2022).   

3.4 Fatty Acid Composition 

Table 3 shows the fatty acid (FA) 

composition during the stationary phases of 

growth. A total of 28 different FA was detected 

in six diatoms isolated. Where Freshwater 

diatoms had 26 FA compared to marine species 

(22 FA). Fatty acids C13:0 and C20:1 was 

found only in N. palea, while C10:0, C20:2, and 

C22:2 was found only in C. calcitrans, S. 

pupula. and C. cuspidata, respectively. 

According to Levitan et al. (2014), diatoms 

predominantly produce 13–21-carbon FA.  

In this study, Palmitoleic acid C16:1 and 

Palmitic acid C16:0 was predominant in both 

marine and freshwater diatom, together 

constitute up to 60%. As individual species, all 

species had similar percentage of C16:1 (29.9 
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to 34%) except S. pupula had the highest 

percentage (39 %). The presence of palmitoleic 

acid (C16:1) is the most favourable for 

biodiesel production (Durrett et al., 2008). In 

addition, high proportions of C20:5n-3 (EPA) 

were found in C. cuspidata 25.5%, and 

Nitzschia sp. 15.7%, which suggested these 

species as a healthy food additive in the 

aquaculture industry. In general, 

Bacillariophyceae strains including diatoms 

have usually high proportions of C20:5n-3 

(Kates and Volcani, 1966; Ackman et al., 1968; 

Dunstan et al., 1993; Renaud et al., 1994; 

Brown et al., 1997). 

The fatty acid pattern can be divided into 

groups based on its saturation; namely saturated 

fatty acid (SFA), monounsaturated fatty acid 

(MUFA), and polyunsaturated fatty acid 

(PUFA). In previous studies, SFA was 

dominant in most diatoms compared to MUFA 

and PUFA (Pratiwi et al., 2009; Prartono et al., 

2013). In the present study, SFA was also 

dominant fatty acid in all species except C. 

cuspidata and Nitzschia sp. PUFA were 

dominant in their TFA. However, the FA 

content of microalgae depends not only on 

culture conditions (including the composition 

of the medium, aeration, light intensity, 

temperature, and age of culture) but also 

depends on the strains (Stonik & Stonik, 2015; 

Jiang et al., 2016) and habitats (Peltomaa et al. 

2019).

 

 

Fig. 1.  Diatom culture in growth chambers with control temperature and light. 
 

Table 1. Growth rate of Marine and Freshwater diatoms. 

Habitat Strains 
Growth rate 

(µ per day) 

Doubling 

Time (days) 

 

Freshwater 

diatoms 

S. pupula  0.21± 0.02 3.3 ± 0.20 

N. palea  0.25± 0.01 2.7 ± 0.01 

C. cuspidata  0.14± 0.03 4.9 ± 1.00 

 

Marine 

diatoms 

N. sigma  0.33± 0.01 2.1 ± 0.01 

Nitzschia sp. 0.51± 0.01 1.3 ± 0.03 

C. calcitrans 0.55± 0.01 1.2 ± 0.03 
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Fig. 2. Scanning electron microscopy (SEM) of the six diatoms studied. (a) N. sigma. (b) Nitzschia sp. 

 

 

Fig. 3. Growth curves of six diatoms grown under similar conditions. 

 Marine diatoms (blue lines), Freshwater diatoms (red lines). 
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Table 2. Total lipid contents (% dw) in diatoms. 

Habitat Species Lipid mean 

Freshwater 

Diatoms 

S. pupula.  16.0 ± 1.0c   

15a  

  
N. palea 16.1 ± 0.3c 

C. cuspidata 13.0 ± 1.0d 

Marine 

Diatoms 

N. sigma 18.7 ± 0.5b   

22b  

  
Nitzschia sp. 28.0 ± 1.4a 

C. calcitrans 19.2 ± 1.5b 

Different superscript letters in the same column indicate significant differences (p < 0.05) in lipid contents. 

 

Table 3. Fatty acids composition of six marine and freshwater Diatoms (as % of total fatty acids). 

Fatty acid 
Freshwater Diatoms Marine Diatoms 

S. pupula N. palea C. cuspidata N. sigma Nitzschia sp. C. calcitrans 

Saturated Fatty Acid (SFA) 

C6:0 0.04 ND ND ND ND 0.5 

C10:0 ND ND ND ND ND 0.14 

C12:0 0.04 ND 0.34 ND ND 0.15 

C 13:0 ND 0.12 ND ND ND ND 

C14:0 9.25 6.72 7.79 12.2 3.49 13.2 

C16:0 33.2 26.2 15.6 29.2 27.9 33.7 

C 17:0 0.05 0.29 ND ND ND 0.52 

C 18:0 ND 7.14 3.34 1.19 ND ND 

C 20:0 1.11 ND ND ND ND ND 

C 24:0 0.3 0.56 ND 0.54 ND 0.18 

Monounsaturated Fatty Acid (MUFA) 

C 14:1 cis - ⁹ 0.12 0.12 ND ND ND ND 

C 15:1 cis - ¹⁰ ND ND 0.3 0.18 ND ND 

C16:1 cis-⁹ 39.5 34.2 32.3 29.9 30.4 31 

C18:1 cis-⁹ 2.15 2.42 1.83 5.4 2.02 1.19 

C18:1 trans-⁹ ND 1.3 ND 2.06 1.46 0.97 

C20:1 cis-¹¹ ND 0.65 ND ND ND ND 

C 24:1 cis - ¹⁵ ND 1 ND 0.19 ND ND 

Polyunsaturated Fatty Acid (PUFA) 

C 18:2n-6 trans, trans -⁹˒¹² 0.94 0.5 5.01 1.5 ND ND 

C18:2n-6 cis, cis-⁹˒¹² ND 0.5 ND ND 1.92 0.45 

C18:3n-3 (ALA) 5.04 1.23 1.94 3.66 8.66 2.2 

C18:3n-6 cis-⁶˒⁹˒¹² 0.67 1.18 1.63 0.07 2.04 1.17 

C 20:2n-6 cis - ¹¹˒¹⁴ 0.14 ND ND ND ND ND 

C 20:3n-6 cis - ⁸˒¹¹˒¹⁴ 0.23 0.39 2.12 0 0.33 0.86 

C 20:3n-3 cis-11,14,17 ND ND ND ND ND 1.95 

C 20:4n-6 (ARA) 7.11 2.96 1.58 0.59 4.8 2.52 

C20:5n-3 (EPA) 0.13 11.6 25.5 12.6 15.7 7.62 

C 22:2n-6 all cis -¹³˒¹⁶ ND ND 0.18 ND ND ND 

C22:6n-3 (DHA) ND 0.81 0.47 0.62 1.28 1.6 

SUM (SFA) 44 41 27.1 43.2 31.4 48.4 

SUM (MUFA) 41.8 39.7 34.4 37.7 33.9 33.2 

SUM (PUFA) 14.3 19.2 38.5 19.1 34.7 18.4 

Sum ω-3(PUFA) 5.17 13.6 28 16.9 25.6 13.4 

Sum ω-6(PUFA) 9.09 5.55 10.5 2.16 9.09 5 

Total number fatty acid 
17 20 15 15 12 18 

26   22  

ND: Non detected 
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Fig. 4. SFA, MUFA, PUFA, ω-3PUFA and ω-6PUFA content of marine and freshwater Diatoms. 
 

 

4. Conclusions  

In conclusion, this study demonstrates the 

total lipids of marine diatoms (C. calcitrans, 

Nitzschia sp., and N. sigma) were significantly 

higher (p < 0.05) than freshwater diatoms (S. 

pupula, N. palea, C. cuspidata). As for quality, 

both marine and freshwater species had a good 

amount of long-chain polyunsaturated fatty 

acids (ω-3 and ω-6 PUFA). The lipids and fatty 

acids found in diatoms are vital for their 

survival and hold significant potential for 

human health and various industries such as 

biodiesel production. The diverse composition 

and functions of diatom lipids, including their 

role in cell structure, energy storage, and 

omega-3 fatty acid production, make them a 

fascinating subject of study. As we continue to 

explore the untapped potential of diatom, we 

may unlock innovative solutions to address 

environmental and health challenges. 
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  معدل النمو ومحتوى الدهون والأحماض الدهنية في بعض الدياتومات البحرية والعذبة
 عبد الفتاح محمد الفيتوري *2،1، ومحمد أمين الرحمن4،2، وفاطمة محمد يوسف 3،2،

  1همو انتصار دلو ،2 سانجوي بانيرجيو
(، جامعة بوترا IBSمعهد العلوم البيولوجية ) 2 (، تاجوراء، ليبيا،MBRCمركز أبحاث الأحياء البحرية ) 1،2

 (، كورياPNUجامعة بوكيونج الوطنية ) 4( وUPMكلية الزراعة، جامعة بوترا ماليزيا ) UPM( ،3(ماليزيا 
*elfituri76@gmail.com 

الدياتومات هي كائنات حية ضوئية يمكنها إنتاج الدهون بكميات كبيرة في غضون  .صلخستالم
فترة زمنية قصيرة. يمكن معالجة كتلتها الحيوية وتحويلها إلى وقود حيوي ومنتجات تجارية قيمة 

 زية )مياه البحر والمياهأخرى. في هذا البحث، تم عزل ستة أنواع من الدياتوم من المياه المالي
العذبة( ونمت تحت نفس الظروف لمراقبة الاختلافات في تركيب الدهون والأحماض الدهنية. 
أظهرت النتائج اختلافات كبيرة في محتوى الدهون الكلي بين أنواع المياه العذبة والبحرية. حيث 

)أنواع المياه العذبة( نسبة ثابتة  Craticula cuspidataو Nitzschia paleaو Sellaphora pupulaكان لدى 
 Nitzschia sp. Chaetocerosمن الوزن الجاف( بينما كان لدى  ٪1.61إلى  13نسبيًا من الدهون )

calcitrans وNitzschia sigma  >( محتوى دهني مرتفع )(. تم الكشف عن ٪11)الأنواع البحرية
في ستة أنواع من الدياتومات المدروسة. كان ثمانية وعشرين من الأحماض الدهنية المختلفة 

( ٪3362إلى  .136) C16: 0-( وحمض البالمتيك٪3263إلى  2262) C16: 1-حمض البالميتوليك
هو السائد في معظم الدياتومات الستة. بالإضافة إلى ذلك، أظهرت الأحماض الدهنية غير 

. Nitzschia spحرية والمياه العذبة )نسبة عالية في بعض الأنواع الب ω-6و ω-3المشبعة المتعددة 
(، مما يشير إلى أن كلا النوعين يتمتعان بجودة جيدة من الأحماض الدهنية المتعددة C. cuspidataو

يدة لمائية أو في تطبيقات مفغير المشبعة ويمكن استخدامهما كمصدر للغذاء في تربية الأحياء ا
 .أخرى 

ماليزيا، الدياتومات، معدلات النمو، الدهون، الأحماض الطحالب الدقيقة، : الكلمات المفتاحية
 .الدهنية

 

 

 



 

 

 

 

 

 

 

 

 

 

 


