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Abstract. The majority of existing research that is related to our study aims to explain phenomena in various 

fields of application that rely on bivariate random variables. Although these distributions have attracted some 

attention in the literature, little research exists on the bivariate compound distribution due to computational 

difficulties in implementing it. This study introduces the conditional saddle-point approximation method to the 

bivariate compound distribution in continuous and discrete settings, which is more powerful than other 

approximation methods. We discuss conditional approximations for cumulative distribution functions of 

bivariate compound distributions. Furthermore, examples of continuous and discrete distributions from the 

bivariate compound truncated Poisson compound class are presented, and comparisons between saddle-point 

approximations and exact calculations show the high accuracy of the saddle-point methods. 
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1. Introduction 

Sums of random variables of the form 𝑋1 + 𝑋2 + 𝑋3 +⋯+ 𝑋𝑁 can be found in a variety of 

contexts and have a random index 𝑁 that is independent of the 𝑋I terms. These types of sums 

are referred to as “stopped sums” by [1] and [2]. Compound distributions have a wide range of 

applications in insurance claim modelling [3], particle counters, birth processes, shot noise, 

damage processes, renewal processes [4] [5], branching processes [6], risk theory [7]  and stopped 

random walks [8]. The total claim amount submitted to an insurance provider, where 𝑁 is the 

number of claims and the 𝑋i terms are the individual claims that are considered independent 

of each other, can be modelled using a compound distribution. 

The Poisson distribution is one of the most common families among compound 

distributions, where 𝑁 is a random variable from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆). Damage process distributions, 

such as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)  ∨  B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝); the Hermite distribution, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) ∨
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, 𝑝); and the Neyman type A distribution, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) ∨ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜙), are all 

members of the compound Poisson distribution family (see [9]). 

The saddle-point method that is used to derive asymptotic approximations of integrals 

of a certain type is known to give remarkably good approximations. In Daniel’s work [10], it 

was shown that this technique could be applied to the problem of approximating densities of 

sums of independent random variables. To apply the resulting approximation, it is necessary 

to know the cumulant generating function (CGF). A saddle-point approximation for a 

cumulative distribution function (CDF) was suggested by [11] for continuous distributions. 

Daniel [12] also introduced two continuity modifications for tail approximation. Robinson [13] 
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presented a general saddle-point approximation technique that can be applied to tail probability 

approximation. Wang [14] generalized Lugannani and Rice’s method to the case of a bivariate 

probability distribution function using variable transformations. Barndorff-Nielsen [15] derived 

a saddle-point density approximation for conditional distributions. Skovgaard [16] proposed a 

saddle-point approximation for conditional distributions. Saddle-point approximations in 

randomization theory were discussed and developed by [17] and [18]. Butler’s work [19] on 

saddle-point approximations provides a good review of the field and outlines applications of 

saddle-point approximations. 

Most current research focuses on explaining phenomena across diverse application areas 

that involve bivariate random variables [20] [21]. Let 𝒁𝑖 be a sequence of iid bivariate random 

vectors, wherein 𝒁𝑖 = (𝑋𝑖, 𝑌𝑖)
𝑇 with 𝑋𝑖 and 𝑌𝑖 possibly being dependent. The bivariate 

compound distribution is defined by the following distribution:  

𝑆𝑁 = 𝒁1 + 𝒁2 + 𝒁3 +⋯+ 𝒁𝑁 = (∑ 𝑿𝑖
𝑁
𝑖=1 , ∑ 𝒀𝑖

𝑁
𝑖=1 )𝑇 ,                     (1) 

where 𝑁 is independent of the 𝒁i terms. 

Let 𝐾𝑆𝑁(𝑡, 𝑠) = log (𝑀𝑠𝑁
(𝑡, 𝑠)) be the joint CGF of 𝑆N, where 𝑀𝑆N(𝑡, 𝑠) is its joint 

moment-generating function (MGF). It is easy to show, using [22], that the joint CGF of 𝑆𝑁 is 

𝐾𝑆𝑁(𝑡, 𝑠) = KN(K𝑍(t, 𝑠)) .                                         (2) 

Saddle-point approximations can be obtained for any statistic that admits a CGF in (2). 

Saddle-point approximation works by inverting the CGF to approximate the CDF of 𝑆N. 

Section 2 presents the main idea of this study and the conditional saddle-point formulas 

that are used in the following sections. The bivariate compound Poisson–gamma distribution 

is considered in Sec. 3 as a continuous example of the bivariate compound Poisson class. In 

Sec. 4, we give an approximation for the bivariate compound Poisson-negative binomial 

distribution with three continuity corrections. Conclusions are given in Sec. 5. 

2.  Conditional Saddle-point Approximations for the Bivariate Compound Distribution 

We derive saddle-point approximations for conditional densities and mass functions 

using two saddle-point approximations: one for the joint density and the other for the marginal. 

Despite appearing to be very complex to present or not feasible, these conditional probability 

approximations are very important because they give us alternative methods of computation, 

possibly based upon simulation methods. See Reid [23] for additional details on conditioning 

techniques in statistical inference. 

By approximating the numerator and denominator separately with saddle-point 

expansion, conditional density can be expanded with large deviation with ease. For more 

details on the so-called double saddle-point approximation, see [17]. It is evident that this 

approximation maintains the same characteristics in terms of relative error uniformly within 

sets of significant deviations as single saddle-point expansions. This method is easy to use if 

the conditional CGF is tractable for additional calculations, though this is not always the case. 

However, it should be kept in mind as a preferred choice whenever possible because the 

expansion calculated below is based on a saddle-point expansion of a multivariate integral, 

which may be less accurate than for one-dimensional integrals. For the calculation of the 

expansion for the conditional distribution function, see [18]. The CGF for the distribution of the 

entire random variable vector under study must be known, and two saddle-point equations 
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need to be solved: one for this random variable vector and one for the vector of conditioning 

coordinates. 

Given that 𝐹(𝑦|𝑥) admits a density and that 𝑌 is a continuous variable, the estimate 

provided by [18] can be summarized as follows: 

𝑃𝑟̂( 𝑌 ≥ 𝑦 ∣∣ 𝑋 = 𝑥 ) ≈ 1 − 𝛷(𝑎̂) + 𝜙(𝑎̂) (
1

𝑎̂
−

1

𝑏̂
) ,        𝑠̂ ≠ 0,            (3) 

where 

𝑎̂ = 𝑠𝑔𝑛(𝑠̂)√2[{𝐾𝑁(𝐾𝑍(𝑡̂, 0)) − 𝑡̂0𝑥} − {𝐾𝑁(𝐾𝑍(𝑡̂, 𝑠̂)) − 𝑡̂𝑥 − 𝑠̂𝑦}] , 

                          (4) 

𝑏̂ = 𝑠̂√|𝐾𝑁
′′(𝐾𝑍(𝑡̂, 𝑠̂))(𝐾𝑍(𝑡̂, 𝑠̂))

2
+ 𝐾𝑍

′′(𝑡̂, 𝑠̂)𝐾𝑁
′ (𝐾𝑍(𝑡̂, 𝑠̂))| 𝐾𝑡𝑡

′′(𝑡̂0, 0)⁄  

and 𝑡̂, 𝑠̂, and 𝑡̂0 are the solutions of the saddle-point equations 𝐾′𝑁(𝐾𝑍(𝑡̂, 𝑠̂))𝐾𝑍
(𝑡)(𝑡̂, 𝑠̂) = 𝑥, 

𝐾′𝑁(𝐾𝑍(𝑡̂, 𝑠̂))𝐾𝑍
(𝑠)(𝑡̂, 𝑠̂) = 𝑦 (these are the numerator saddle-point in the approximation) and 

𝐾′𝑁(𝐾𝑍(𝑡̂0, 0))𝐾𝑍
(𝑡)(𝑡̂0, 0) = 𝑥 (this is the denominator saddle-point), respectively, where 

𝐾𝑍
(𝑡) =

𝜕𝐾𝑍

𝜕𝑡
, 𝐾𝑍

(𝑠) =
𝜕𝐾𝑍

𝜕𝑠
 , and 𝑠𝑔𝑛(𝑠̂) captures the 𝑠𝑖𝑔𝑛 ± for 𝑠̂. As long as (x,y) ∈ 𝐼𝜒(denotes 

the interior of the convex hull of the support 𝜒), Equation(3) holds. Both sets of saddle-points 

are located within 𝑆, the joint convergence region connected to 𝐾(𝑡, 𝑠), so both Hessians in ŝ 
are positive definite. In addition, the square roots of 𝑠̂ are clearly defined. 

The lattice distribution is a discrete probability distribution that is focused on a set of 

points of the form 𝛾 + 𝑛ℎ, where 𝑛 = 0,±1,±2,±3,… ; 𝛾 is a real number; and ℎ > 0. The 

lattice distribution step is denoted by the number ℎ. If the support of 𝑌 is the integer lattice, 

then the continuity corrections to (3), as implemented in [18], should be used to achieve the 

highest accuracy. 

First Continuity Correction 

If 𝑡̂, 𝑠̂ is the result associated with 𝐾′𝑁(𝐾𝑍(𝑡̂, 𝑠̂))𝐾
′
𝑍(𝑡̂, 𝑠̂) = (𝑗, 𝑘) for a numerator 

saddle-point whose 𝑠̂ ≠ 0, then we have the following: 

𝑃𝑟̂1( 𝑌 ≥ 𝑘 ∣∣ 𝑋 = 𝑗 ) ≈ 1 − 𝛷(𝑎̂) + 𝜙(𝑎̂) (
1

𝑎̂
−

1

𝑏̂1
) ,        𝑠̂ ≠ 0,                   (4) 

where 

𝑎̂ = 𝑠𝑔𝑛(𝑠̂)√2[{𝐾𝑁(𝐾𝑍(𝑡̂, 0)) − 𝑡̂0𝑗} − {𝐾𝑁(𝐾𝑍(𝑡̂, 𝑠̂)) − 𝑡̂𝑗 − 𝑠̂𝑘}],                     (5) 

𝑏̂1 = (1 − 𝑒−𝑠̂)√|𝐾𝑁
′′(𝐾𝑍(𝑡̂, 𝑠̂))(𝐾𝑍(𝑡̂, 𝑠̂))

2
+ 𝐾𝑍

′′(𝑡̂, 𝑠̂)𝐾𝑁
′ (𝐾𝑍(𝑡̂, 𝑠̂))| 𝐾𝑡𝑡

′′(𝑡̂0, 0)⁄  .        (6) 

Therefore, 𝑡0̂   solves  𝐾′𝑁(𝐾𝑍(𝑡̂0, 0))𝐾𝑍
(𝑡)(𝑡̂0, 0) = 𝑗. 

Second Continuity Correction 

Given that the offset saddle-point is represented by (𝑡˜, 𝑠˜), and 𝑘− =  𝑘 −  1/2 denotes 

the offset of 𝑘, we can compute  
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𝐾′𝑁(𝐾𝑍(𝑡̂, 𝑠̂))𝐾𝑍(𝑡̂, 𝑠̂) = (𝑗, 𝑘 −
1

2
) .                                         (7) 

Given that 𝑠̃ ≠ 0, then 

𝑃𝑟̂2( 𝑌 ≥ 𝑘 ∣∣ 𝑋 = 𝑗 ) ≈ 1 − 𝛷(𝑎̃2) + 𝜙(𝑎̃2) (
1

𝑎̃2
−

1

𝑏̃2
) ,        𝑠̃ ≠ 0,                  (8) 

where 

𝑎̃2 = 𝑠𝑔𝑛(𝑠̃)√2[{𝐾𝑁(𝐾𝑍(𝑡̂, 0)) − 𝑡̂0𝑗} − {𝐾𝑁(𝐾𝑍(𝑡̂, 𝑠̃)) − 𝑡̃𝑗 − 𝑠̃𝑘−}] ,              (9) 

𝑏̃2 = 2 𝑠𝑖𝑛ℎ (
𝑠̃

2
)√|𝐾𝑁

′′(𝐾𝑍(𝑡̃, 𝑠̃))(𝐾𝑍(𝑡̃, 𝑠̃))
2
+𝐾𝑍

′′(𝑡̃, 𝑠̃)𝐾𝑁
′ (𝐾𝑍(𝑡̃, 𝑠̃))| 𝐾𝑡𝑡

′′(𝑡̂0, 0)⁄  ,     (10) 

and the saddle-point, t ̂0, remains unaltered. 

3. The Bivariate Compound Poisson-Gamma Distribution 

As a continuous distribution example, consider 𝑆𝑁 in (1) where 𝑁 is distributed as 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) with 𝑀𝑁(𝑠) = exp 𝜆(𝑒
𝑠 − 1) and the 𝑋𝑖 and 𝑌𝑖 terms are iid random variables 

that follow a 𝐺𝑎𝑚𝑚𝑎(𝛼1,  𝛽1) ∨ 𝐺𝑎𝑚𝑚𝑎(𝛼2, 𝛽2) distribution, with a joint distribution 

𝑀𝑍(𝑡, 𝑠) = (1 − β1𝑡)
−α1(1 − β2𝑡)

−α2 that is independent of 𝑁; then 𝑆𝑁 has the bivariate 

compound Poisson–gamma distribution [24]. Applications of the Poisson–gamma model are 

wide ranging: it has been used on catch and effort data in [25], in recruitment in multicentre 

trials, in insurance, and in pump failure [26]. As the 𝑆𝑁 distribution is not continuous due to a 

point probability, 𝑃𝑟(𝑁 = 0), at zero, the truncated distribution can be used [27]. However, the 

MGF of 𝑁 is 

𝑀𝑁(𝑠) = [exp 𝜆 (𝑒
𝑠 − 1) − exp(−𝜆)]/(1 − exp(−𝜆)); 

hence, the MGF of 𝑆𝑁̂ = ∑ 𝑍𝑖
𝑁̂
𝑖=1  is 

𝑀𝑆𝑁(𝑡, 𝑠) = 𝑀𝑁 (𝑙𝑜𝑔𝑀𝑋,𝑌 (𝑡, 𝑠)), 

𝑀𝑆𝑁(𝑡, 𝑠) =
exp (λ(𝑀𝑥,𝑦(𝑡, 𝑠) − 1)) − exp(−λ)

(1 − exp(−λ))
, 

and the CGF of 𝑆𝑁 is 

                            𝐾𝑆̂𝑁(𝑡̂, 𝑠̂) = log𝑀𝑆̂𝑁
(𝑡̂, 𝑠̂), 

                                                   

= log ((1 − 𝑞)−1 [exp (λ (
1

(1 − β1𝑡̂)α1
) (

1

(1 − β2𝑠̂)α2
) − λ) − 𝑞]), 

                                                    = log(

[exp (λ (
1

(1 − β1𝑡̂)
α1
) (

1
(1 − β2𝑠̂)α2

) − λ) − 𝑞]

(1 − 𝑞)
), 

where 𝑞 = 𝑒−𝜆. 

The numerator saddle-point solves 

(11) 

(12) 
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𝐾′𝑁(𝐾𝑍(𝑡̂, 𝑠̂))𝐾𝑍
(𝑡)(𝑡̂, 𝑠̂) = 𝑥, 

 (15) 

𝐾′𝑁(𝐾𝑍(𝑡̂, 𝑠̂))𝐾𝑍
(𝑠)(𝑡̂, 𝑠̂) = 𝑦, 

that is, 

   
𝜆𝛼1𝛽1 𝑒𝑥𝑝(

𝜆

(1−𝛽1𝑡)
𝛼1(1−𝛽2𝑠)

𝛼2−𝜆)

(1−𝛽1𝑡)𝛼1(1−𝛽2𝑠)
𝛼2(1−𝛽1𝑡)[𝑒𝑥𝑝(

𝜆

(1−𝛽1𝑡)
𝛼1(1−𝛽2𝑠)

𝛼2−𝜆)−𝑞]
− 𝑥 = 0,                      (13) 

                                                                  

𝜆𝛼2𝛽2 𝑒𝑥𝑝(
𝜆

(1−𝛽1𝑡)
𝛼1(1−𝛽2𝑠)

𝛼2−𝜆)

(1−𝛽1𝑡)𝛼1(1−𝛽2𝑠)
𝛼2(1−𝛽2𝑠)[𝑒𝑥𝑝(

𝜆

(1−𝛽1𝑡)
𝛼1(1−𝛽2𝑠)

𝛼2
−𝜆)−𝑞]

− 𝑦 = 0,                     (14) 

which implies (see Appendix A)  

𝑡̂ =
1

𝛽1
{1 − [

𝜆

𝑧
(
𝛼1𝛽1𝑦

𝛼2𝛽2𝑥
)
𝛼2

]

1
𝛼1+𝛼2

}, 

                                    

(15) 

𝑠̂ =
1

𝛽2
[1 − [

𝜆

𝑧
(
𝛼1𝛽1𝑥

𝛼2𝛽2𝑦
)
𝛼1

]

1
𝛼1+𝛼2

], 

and the denominator saddle-point solves 

𝐾′𝑁(𝐾𝑍(𝑡̂0, 0))𝐾𝑍
(𝑡)(𝑡̂0, 0) = 𝑥,                                           (16) 

that is, 

𝜆𝛼1𝛽1 𝑒𝑥𝑝(
𝜆

(1−𝛽1𝑡)
𝛼1
−𝜆)

(1−𝛽1𝑡)𝛼1(1−𝛽1𝑡)[𝑒𝑥𝑝(
𝜆

(1−𝛽1𝑡)
𝛼1
−𝜆)−𝑞]

− 𝑥 = 0,                              (17) 

which gives (see Appendix B) 

𝑡0̂ =
1

𝛽1
[1 ± (

𝜆

𝑧
)

1

𝛼1].                                                (18) 

In addition, 

𝐾𝑡
′′(𝑡, 𝑠) =

𝜆𝛼1
2𝛽1

2 𝑒𝑥𝑝 (
𝜆

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2
− 𝜆)

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2(1 − 𝛽1𝑡)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)𝛼1(1 − 𝛽2𝑠)𝛼2

− 𝜆) − 𝑞]
 

                           

(19) 
                +

𝜆𝛼1𝛽1
2 𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆)

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2(1 − 𝛽1𝑡)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)𝛼1(1 − 𝛽2𝑠)𝛼2

− 𝜆) − 𝑞]
 

                   +
𝜆2𝛼1

2𝛽1
2 𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆)

(1 − 𝛽1𝑡)
2𝛼1(1 − 𝛽2𝑠)

2𝛼2(1 − 𝛽1𝑡)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)𝛼1(1 − 𝛽2𝑠)𝛼2

− 𝜆) − 𝑞]
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                      −
𝜆2𝛼1

2𝛽1
2 (𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆))

2

(1 − 𝛽1𝑡)
2𝛼1(1 − 𝛽2𝑠)

2𝛼2(1 − 𝛽1𝑡)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆) − 𝑞]

2, 

𝐾𝑠
′′(𝑡, 𝑠) =

𝜆𝛼2
2𝛽2

2 𝑒𝑥𝑝 (
𝜆

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2
− 𝜆)

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2(1 − 𝛽2𝑠)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆) − 𝑞]

 

                    

(20) 

 

                 +
𝜆𝛼2𝛽2

2 𝑒𝑥𝑝 (
𝜆

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2
− 𝜆)

(1 − 𝛽1𝑡)
𝛼1(1 − 𝛽2𝑠)

𝛼2(1 − 𝛽2𝑠)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆) − 𝑞]

 

                    +
𝜆2𝛼2

2𝛽2
2 𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆)

(1 − 𝛽1𝑡)
2𝛼1(1 − 𝛽2𝑠)

2𝛼2(1 − 𝛽2𝑠)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆) − 𝑞]

 

                      −
𝜆2𝛼2

2𝛽2
2 (𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆))

2

(1 − 𝛽1𝑡)
2𝛼1(1 − 𝛽2𝑠)

2𝛼2(1 − 𝛽2𝑠)
2 [𝑒𝑥𝑝 (

𝜆
(1 − 𝛽1𝑡)

𝛼1(1 − 𝛽2𝑠)
𝛼2
− 𝜆) − 𝑞]

2 . 

Note that 

𝐾′′𝑁(𝐾𝑍(𝑡̃, 𝑠̃))(𝐾𝑍(𝑡̃, 𝑠̃))
2
+ 𝐾′′𝑍(𝑡̃, 𝑠̃)𝐾

′
𝑁(𝐾𝑍(𝑡̃, 𝑠̃)) = 𝐾

′′(𝑡, 𝑠). 

This Hessian matrix can be obtained by 

𝐾′′(𝑡, 𝑠) = [
𝐾′′𝑡𝑡(𝑡, 𝑠) 𝐾′′𝑡𝑠(𝑡, 𝑠)

𝐾′′𝑠𝑡(𝑡, 𝑠) 𝐾′′𝑠𝑠(𝑡, 𝑠)
],           𝐾′′𝑡𝑡(𝑡, 𝑠) =

𝜕2

𝜕𝑡2
𝐾(𝑡, 𝑠),                𝑒𝑡𝑐., 

with det 𝐾′′ (𝑡, 𝑠) > 0 (positive definite). 

The conditional saddle-point approximation for the continuous CDFs 

𝑃𝑟̂( 𝑌 ≥ 𝑦 ∣∣ 𝑋 = 𝑥 ) given by (3) and 𝑡̂, 𝑠,̂ and 𝑡̂0 are as in (16) and (19), respectively. 

To see the accuracy of the conditional saddle-point approximation, consider the 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(4) ∨ 𝐺𝑎𝑚𝑚𝑎(1,2), 𝐺𝑎𝑚𝑚𝑎(1,4) distribution. Table 1 provides the exact value and 

conditional saddle-point approximation of 𝑃𝑟(𝑌 ≥ 𝑦|𝑋 = 𝑥) at some values of 𝑥, 𝑦. The exact 

value of the CDF of 𝑆N is calculated by simulating 106 values of 𝑆𝑁. Each value is calculated 

by generating 𝑁, from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(4) and 𝑥, 𝑦 values from the 𝐺𝑎𝑚𝑚𝑎(1,2), 𝐺𝑎𝑚𝑚𝑎(1,4) 
distribution. The conditional saddle-point approximation is very accurate.  

Table 1. The exact and conditional saddle-points of the CDF for the bivariate compound truncated 𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝟒) ∨
𝑮𝒂𝒎𝒎𝒂(𝟏, 𝟐), 𝑮𝒂𝒎𝒎𝒂(𝟏, 𝟒) distribution. 

X Y Exact 𝑭̂(𝒚|𝒙) Relative Error 

2.5 1.5 0.0677707           0.0689926 0.017710595 

2.5 2.0 0.0740187 0.09687894 0.235967074 

2.5 3.5 0.0918188           0.1890771 0.514384344 

5.5 1.5 0.0766979 0.02113559 2.62885.673 

5.5 2.5 0.0975687 0.04549499 1.144603175 

7.5 1.5            0.078945 0.01104324 6.148717224 

7.5 2.5 0.1025864 0.02580095 2.976070649 

7.5 3.5            0.128174 0.04645276 1.759233251 
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4. The Bivariate Compound Poisson-negative Binomial Distribution 

The bivariate compound Poisson-negative binomial models are naturally found in the 

fields of insurance and actuarial science, and many authors have studied them [28]. The issue of 

approximate compound Poisson distributions for compound negative binomial distributions 

was addressed by [29], [30], [31], and [32]. Numerous social, financial, and physical issues can be 

effectively modelled using this distribution – for example, the total number of orders placed 

and items sold each day, the total number of insurance claims and claimants each hour, the total 

number of injury accidents and fatalities, and the total number of visits and drugs prescribed. 

Let 𝑁 be the number of claims that occurred in a fixed time period, which follows a 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) distribution with 𝑀𝑁(𝑠) = exp 𝜆(𝑒
𝑠 − 1), where the 𝑋𝑖

′ and 𝑌𝑖
′ terms are iid 

random variables that follow a (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟1, 𝑝1),𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 −

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟2, 𝑝2)) ditribution, with a joint distribution 𝑀(𝑡, 𝑠) = (𝑝1/(1 − 𝑞1𝑒
𝑡))

−𝑟1
(𝑝2/

(1 − 𝑞2𝑒
𝑠))

−𝑟2
. Then, 𝑆𝑁 in (1) follows a bivariate compound Poisson-negative binomial 

distribution with CGF 

𝑘𝑠𝑁(𝑡, 𝑠) = 𝜆 ((
𝑝1

1−𝑞1𝑒𝑡
)
𝑟1
(

𝑝2

1−𝑞2𝑒𝑠
)
𝑟2
− 1).                                     (21) 

The numerator saddle-point, 𝑡̂, 𝑠̂, and the denominator saddle-point, 𝑡̂0, solve the saddle-

point equations 𝐾′𝑡(𝑡0, 𝑠0) = 𝑗, 𝐾′𝑠(𝑡0, 𝑠0) = 𝑘 and 𝐾′𝑡(𝑡̂0, 0) = 𝑗, respectively, for 𝑗, 𝑘 =
 0,1,2, …, and are given by 

  𝑠̃ = 𝑙𝑜𝑔 (
1−𝑤

𝑞2
),                                                         (22) 

  𝑡̃ = 𝑙𝑜𝑔 (
1−𝑣

𝑞1
).                                                         (23) 

The values of 𝑤, 𝑣 ∉ { 0,1}, respectively, are found in the following equations (see 

Appendix C): 

𝑟1
𝑟1𝑦𝑟1+1𝑤𝑟1+𝑟2+1 = 𝜆𝑝1

𝑟1𝑝2
𝑟2𝑟2(1 − 𝑤)[𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤]

𝑟1 ,                   (24) 

𝑟2
𝑟2𝑥𝑟2+1𝑣𝑟1+𝑟21 = 𝜆𝑝1

𝑟1𝑝2
𝑟2𝑟1(1 − 𝑣)[𝑟1𝑦 + (𝑟2𝑥 − 𝑟1𝑦)𝑣]

𝑟2 ,                     (25) 

and the denominator saddle-point is 

            𝑡̂0 = 𝑙𝑜𝑔

{
 
 

 
 
1

𝑞1
[
 
 
 
 

1 −  √
𝜆𝑝1

2𝑝2
𝑟2

𝑥(1 − 𝑞2)𝑟2
+√

𝜆2𝑝1
4𝑝2

2𝑟2

𝑥2(1 − 𝑞2)2𝑟2
+

8𝜆3𝑝1
6𝑝2

3𝑟2

27𝑥3(1 − 𝑞2)3𝑟2

3

  

−   √
𝜆𝑝1

2𝑝2
𝑟2

𝑥(1 − 𝑞2)𝑟2
−√

𝜆2𝑝1
4𝑝2

2𝑟2

𝑥2(1 − 𝑞2)2𝑟2
+

8𝜆3𝑝1
6𝑝2

3𝑟2

27𝑥3(1 − 𝑞2)3𝑟2

3

]
 
 
 
 

}
 
 

 
 

, 

See Appendix D. 

When 𝑗 =  0 or 𝑘 =  0, 𝑃𝑟(𝑁 = 0) = 𝑒−𝜆. For 𝑗, 𝑘 ≠ 0, the conditional saddle-point 

approximation for the distribution is calculated by (5), where 𝐾(𝑡̂, 𝑠̂) 𝐾′′𝑡𝑡(𝑡̂0, 0), 𝐾(𝑡̂0, 0), 
and |𝐾′′(𝑡, 𝑠)|. 
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Conditional saddle-point continuity-corrected approximations 𝑃𝑟̂𝑖 = (𝑌 ≥ 𝑘|𝑋 = 𝑗), 
𝑖 =  1,2 are given in (5) and (9). 

To assess the accuracy of the conditional saddle-point approximations, consider the 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(5) ∨ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,0.5),𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,0.5) distribution. 

Table 2 provides the saddle-point approximations to the distribution of 𝑆𝑁. Each line represents 

the exact value, 𝑃𝑟̂ = (𝑌 ≥ 𝑘|𝑋 = 𝑗), with the two continuity-corrections for 𝑗, 𝑘 =  1, 2, 3, … 

The exact p value is calculated by simulating 106 values for 𝑆𝑁 by simulating 𝑁 from 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(5) values and generating 𝑁 values from the 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 −
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,0.5),𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2,0.5) distribution. The saddle-point 

approximations show great accuracy. In most cases the second correction is better than the 

first correction. This could be because of the continuity correction term, (1 − 𝑒−𝑠̂) (Equation 

7), which seems to modify the CDF probability in a way that isn’t consistent with the 

continuity correction. 

Table 2. The exact and conditional saddle-points of the CDF for the bivariate compound 𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝟓) ∨
𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍(𝟐, 𝟎. 𝟓), 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍(𝟐, 𝟎. 𝟓) distribution. 

X Y Exact 𝑷𝒓̂𝟏 𝑷𝒓̂𝟐 Relative Error (Pr1) Relative Error (Pr2) 

1 1 0.25 0.2787989 0.2618004 0.103296319 0.045074034 

1 2 0.34375 0.40079085 0.3914946 0.142320739 0.121954706 

1 3 0.40625 0.51601354 0.5099798 0.212714457 0.203399883 

2 1 0.171875 0.18385286 0.1718464 0.065149163 0.000166602 

2 2 0.236328 0.29021717 0.2828212 0.185685671 0.164390759 

2 3 0.279297 0.4003707 0.3951325 0.302403997 0.293156075 

3 1 0.135417 0.12920385 0.1203312 0.048087963 0.125369169 

3 2 0.186198 0.21887119 0.212859 0.149280451 0.125251722 

3 3 0.220052 0.31871378 0.3141364 0.309562329 0.299501767 

4 1 0.111328 0.09403932 0.0873369 0.183845226 0.274695596 

4 2 0.153076 0.16889246 0.1639764 0.093648112 0.066475647 

4 3 0.180908 0.2574482 0.253468 0.297303302 0.286268737 

5 1 0.09375 0.070077 0.064937 0.337814119 0.443706978 

5 2 0.128906 0.132383 0.128347 0.026264702 0.00435538 

5 3 0.152344 0.210072 0.206624 0.274801021 0.262699396 

5. Conclusion 

This article provides methods for calculating conditional saddle-point approximations for bivariate 

compound distributions. The bivariate compound class includes the bivariate Hermite distribution, the bivariate 

Neyman type A distribution, the bivariate Pólya–Aeppli distribution, and the bivariate Thomas distribution. Our 

conditional saddle-point approximations are very accurate and quickly calculated approximations. Moreover, our 

method is easy to implement and requires little computational effort. We demonstrate the effectiveness of our 

conditional saddle-point approximations in both discrete and continuous settings using numerical examples.  
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Appendix A   

We solve the saddle-point equations as below: 

    
          

1 2

1 2 1 2

1 1 1 2

1 2 1 1 2

exp 1 1
0

1 1 1 exp 1 1 e

t s
x

t s t t s

 

    

     

      

 

  

  
 

       
   , 

    
          

1 2

1 2 1 2

2 2 1 2

1 2 2 1 2

exp 1 1
0

1 1 1 exp 1 1 e

t s
y

t s s t s

 

    

     

      

 

  

  
 

       
   . 

The terms 𝑥 and 𝑦 are placed on the right side of their respective equations, and the first equation is divided by the 

second equation to obtain the relation.  

 

                                                                            
 

 
1 1 2

2 2 1

1

1

s x

t y

  

  





.                                               

            (A.1) 

The substitutions  11 t w  and  21 s v  are made so that equation (A.1) takes the form   

                                                                          1 1

2 2

v x

w y

 

 
 .       

and  

                                 𝑣 =
α2β2𝑤𝑥

α1β1𝑦
                                                                                 (A.2) 

Then, the first equation can be rewritten as 

                      

λα1β1 exp(
λ

𝑤α1(
α2β2𝑤𝑥
α1β1𝑦

)
α2−λ)

𝑤α1(
α2β2𝑤𝑥

α1β1𝑦
)
α2
𝑤[exp(

λ

𝑤α1(
α2β2𝑤𝑥
α1β1𝑦

)
α2−λ)−𝑞]

= 𝑥.                                     (A.3) 

Making another substitution, =
λ

𝑤α1(
α2β2𝑤𝑥

α1β1𝑦
)
α2 , we obtain 

𝑧 =
λ

𝑤α1𝑤α2 (
α2β2𝑥
α1β1𝑦

)
α2
=

λ

𝑤α1+α2
(
α1β1𝑦

α2β2𝑥
)
α2

, 

𝑤α1+α2 =
λ

𝑧
(
α1β1𝑦

α2β2𝑥
)
α2

, 

                                                            𝑤 = [
λ

𝑧
(
α1β1𝑦

α2β2𝑥
)
α2
]

1

α1+α2 .                                                            (A.4)                 

with the caution that a double sign may appear if 1 2   is even, Equation (A.3) takes the form 
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𝑧α1β1 exp(𝑧−λ)

[
λ

𝑧
(
α1β1𝑦

α2β2𝑥
)
α2
]

1
α1+α2[exp(𝑧−λ)−𝑞]

= 𝑥. 

then 

 

𝑧α1β1 exp(𝑧 − λ)

[
λ
𝑧 (
α1β1𝑦
α2β2𝑥

)
α2

]

1
α1+α2

= 𝑥[exp(𝑧 − λ) − 𝑞], 

            

𝑧α1β1 exp(𝑧 − λ)

[
λ
𝑧 (
α1β1𝑦
α2β2𝑥

)
α2

]

1
α1+α2

= 𝑥 exp(𝑧 − λ) − 𝑥𝑞, 

 

𝑧
1+

1
α1+α2α1β1 exp(𝑧 − λ)

λ
1

α1+α2

(
α2β2𝑥

α1β1𝑦
)

α2
α1+α2

− 𝑥 exp(𝑧 − λ) + 𝑥𝑞 = 0, 

(α1β1)
1−

α2
α1+α2

λ
1

α1+α2

(
α2β2𝑥

𝑦
)

α2
α1+α2

𝑧
α1+α2+1
α1+α2 exp(𝑧 − λ) − 𝑥 exp(𝑧 − λ) + 𝑥𝑞 = 0, 

                  

[
 
 
 
(α1β1)

α2
α1+α2 (

α2β2𝑥

λ
1
α2𝑦

)

α2
α1+α2

𝑧
α1+α2+1
α1+α2 − 𝑥

]
 
 
 

exp(𝑧 − λ) + 𝑥𝑞 = 0, 

  

                       [(α1β1)
α2

α1+α2 (
α2β2𝑥

λ

1

α2𝑦

)

α2

α1+α2

𝑧
α1+α2+1

α1+α2 − 𝑥] exp(𝑧) + 𝑥𝑞 exp(λ) = 0,                              (A.5) 

which is an equation that implicitly depends only on t and not on s. Again, the caution of a double sign before the 

coefficient of 𝑧
α1+α2+1

α1+α2  may appear if 1 2   is even. Once a value of z that satisfies equation (A.5) is determined, 

the corresponding value of t is found by substituting back as follows: 

Recall equation (A.4) as 

     𝑤 = [
𝜆

𝑧
(
𝛼1𝛽1𝑦

𝛼2𝛽2𝑥
)
𝛼2

]

1
𝛼1+𝛼2

, 

and the substitution  11 t w  , we obtain 

1 − β1𝑡 = [
λ

𝑧
(
α1β1𝑦

α2β2𝑥
)
α2

]

1
α1+α2

. 

then 
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β1𝑡 = 1 − [
λ

𝑧
(
α1β1𝑦

α2β2𝑥
)
α2

]

1
α1+α2

, 

𝑡 =
1

β1
{1 − [

λ

𝑧
(
α1β1𝑦

α2β2𝑥
)
α2

]

1
α1+α2

}, 

with the caution that a double sign may appear before the power if 1 2   is even.  

To obtain the value of 𝑠, observe that 𝑧 can also be written in terms of 𝑣 only, as follows: equation (A.2) can be 

manipulated to obtain 

                                                                                   𝑤 =
α1β1𝑣𝑦

α2β2𝑥
; 

therefore, 

                                                                                   𝑧 =
λ

(
α1β1𝑣𝑦

α2β2𝑥
)
α1
𝑣α2
, 

and as with equation (A.4), we obtain that 

                                                                                   𝑣 = [
λ

𝑧
(
α1β1𝑥

α2β2𝑦
)
α1
]

1

α1+α2
, 

with the caution of a double sign if 1 2   is even. This implies that equation (A.5) can also be seen as an equation 

that implicitly depends only on 𝑠 and not on 𝑡. Once a value of 𝑧 is found, the corresponding value of 𝑠 can be 

found by substituting backwards: 

1 − β2𝑠 = [
λ

𝑧
(
α1β1𝑥

α2β2𝑦
)
α1

]

1
α1+α2

, 

β2𝑠 = 1 − [
λ

𝑧
(
α1β1𝑥

α2β2𝑦
)
α1

]

1
α1+α2

, 

𝑠 =
1

β2
[1 − [

λ

𝑧
(
α1β1𝑥

α2β2𝑦
)
α1

]

1
α1+α2

] , 

with the caution that a double sign may appear if 1 2   is even. 

 

Appendix B 

To find the value of 0̂t  we solve 

∂𝐾1(𝑡)

∂𝑡
= 𝑥, 

λα1β1 exp (
λ

(1 − β1𝑡)
α1
− λ)

(1 − β1𝑡)
α1(1 − β1𝑡) [exp (

λ
(1 − β1𝑡)

α1
− λ) − 𝑞]

− 𝑥 = 0. 

The substitution 𝑧 =
λ

(1−β1𝑡)
α1

is applied to obtain 

1 − β1𝑡 = (
λ

𝑧
)

1
α1
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with the caution that a double sign may appear before the power if α1 is even. The equation is transformed into 

𝑥 =
𝑧α1β1 exp(𝑧 − λ)

(
λ
𝑧
)

1
α1
[exp(𝑧 − λ) − 𝑞]

, 

and we have that 

                                                         𝑧
α1+1

α1 α1β1 exp(𝑧) = λ
1

α1𝑥(exp(𝑧) − 𝑞 exp(λ)), 

(α1β1𝑧
α1+1
α1 − λ

1
α1𝑥) exp(𝑧) + λ

1
α1𝑥𝑞 exp(λ) = 0 

as in Equation (A.5). Therefore, the solution of the original equation is 

𝑡0̂ =
1

β1
[1 − (

λ

𝑧
)

1
α1
], 

where 𝑧 satisfies 

(𝛼1𝛽1𝑧
𝛼1+1
𝛼1 − 𝜆

1
𝛼1𝑥) exp(𝑧) + 𝜆

1
𝛼1𝑥𝑞 exp(𝜆) = 0. 

In addition, if 𝛼1 is even, the double-sign versions 

(±𝛼1𝛽1𝑧
𝛼1+1
𝛼1 − 𝜆

1
𝛼1𝑥) exp(𝑧) + 𝜆

1
𝛼1𝑥𝑞 exp(𝜆) = 0, 

𝑡0̂ =
1

𝛽1
[1 ± (

𝜆

𝑧
)

1
𝛼1
], 

should be considered.  

 

Appendix C 

We solve the saddle-point equations to find 𝑡, 𝑠 as below. 

The variable 𝑡 is eliminated in the equation 

𝜆 [
𝑝1
𝑟1𝑟1𝑞1𝑒

𝑡

(1 − 𝑞1𝑒
𝑡)𝑟1+1

𝑝2
𝑟2

(1 − 𝑞2𝑒
𝑠)𝑟2

] − 𝑥 = 0, 

and the variable 𝑠 is eliminated in the equation 

𝜆 [
𝑝1
𝑟1

(1 − 𝑞1𝑒
𝑡)𝑟1

𝑝2
𝑟2𝑟2𝑞2𝑒

𝑠

(1 − 𝑞2𝑒
𝑠)𝑟2+1

] − 𝑦 = 0. 

This is achieved by substituting 1 − 𝑞1𝑒
𝑡 = 𝑤 and 1 − 𝑞2𝑒

𝑠 = 𝑣 into the equation to obtain 

                                                             
λ𝑝1

𝑟1𝑝2
𝑟2𝑟1(1−𝑣)

𝑣𝑟1+1𝑤𝑟2
− 𝑥 = 0,                                                                       (C.1) 

                                                            
λ𝑝1

𝑟1𝑝2
𝑟2𝑟2(1−𝑤)

𝑤𝑟2+1𝑣𝑟1
− 𝑦 = 0.                                                                       (C.2) 

The goal is to eliminate the variable v in Equation (C.1) and the variable w in Equation (C.2). Observe that 𝑤 ≠

0 and 𝑣 ≠ 0. The term 𝑤𝑟2  in Equation (C.1) is isolated to obtain 

                                                                         𝑤𝑟2 =
λ𝑝1

𝑟1𝑝2
𝑟2𝑟1(1−𝑣)

𝑣𝑟1+1𝑥
,                                                                                    (C.3) 

and the term 𝑣𝑟1 in equation (C.2) is isolated to obtain 
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                                                                         𝑣𝑟1 =
λ𝑝1

𝑟1𝑝2
𝑟2𝑟2(1−𝑤)

𝑤𝑟2+1𝑦
.                                                                                     (C.4) 

It is observed that 𝑤 ≠ 1 and 𝑣 ≠ 1. Equation (C.3) is divided by Equation (C.4) to obtain 

𝑤𝑟2

𝑣𝑟1
=
λ𝑝1

𝑟1𝑝2
𝑟2𝑟1(1 − 𝑣)

𝑣𝑟1+1𝑥

𝑤𝑟2+1𝑦

λ𝑝1
𝑟1𝑝2

𝑟2𝑟2(1 − 𝑤)
, 

                                                                         
𝑤𝑟2

𝑣𝑟1
=

𝑟1𝑤
𝑟2+1𝑦(1−𝑣)

𝑟2𝑣
𝑟1+1𝑥(1−𝑤)

. 

Therefore, 

𝑟1𝑦𝑤(1 − 𝑣)

𝑟2𝑥𝑣(1 − 𝑤)
= 1, 

which implies that 

𝑟1𝑦𝑤 − 𝑟1𝑦𝑤𝑣 = 𝑟2𝑥𝑣 − 𝑟2𝑥𝑣𝑤. 

Then, 

𝑟1𝑦𝑤 + (𝑟2𝑥 − 𝑟1𝑦)𝑤𝑣 − 𝑟2𝑥𝑣 = 0, 

leading to 

𝑤 =
𝑟2𝑥𝑣

𝑟1𝑦 + (𝑟2𝑥 − 𝑟1𝑦)𝑣
, 

and 

𝑣 =
𝑟1𝑦𝑤

𝑟2𝑥+(𝑟1𝑦−𝑟2𝑥)𝑤
.                                                                 (C.5) 

In addition, 

1 − 𝑤 =
𝑟1𝑦(1 − 𝑣)

𝑟1𝑦 + (𝑟2𝑥 − 𝑟1𝑦)𝑣
,   

and 

                                                            1 − 𝑣 =
𝑟2𝑥(1−𝑤)

𝑟2𝑥+(𝑟1𝑦−𝑟2𝑥)𝑤
.                                                             (C.6) 

The values of 𝑣 in Equation (C.5) and 1 −  𝑣 in Equation (C.6) are substituted into Equation (C.3) to obtain 

𝑤𝑟2 =
λ𝑝1

𝑟1𝑝2
𝑟2𝑟1

𝑟2𝑥(1 − 𝑤)
𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤

𝑥 [
𝑟1𝑦𝑤

𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤
]
𝑟1+1

, 

𝑟1
𝑟1+1𝑥𝑦𝑟1+1𝑤𝑟1+𝑟21

[𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤]
𝑟1+1

=
λ𝑝1

𝑟1𝑝2
𝑟2𝑟1𝑟2𝑥(1 − 𝑤)

𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤
, 

𝑟1
𝑟1𝑦𝑟1+1𝑤𝑟1+𝑟21

[𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤]
𝑟1
= λ𝑝1

𝑟1𝑝2
𝑟2𝑟2(1 − 𝑤), 

           𝑟1
𝑟1𝑦𝑟1+1𝑤𝑟1+𝑟2+1 = λ𝑝1

𝑟1𝑝2
𝑟2𝑟2(1 − 𝑤)[𝑟2𝑥 + (𝑟1𝑦 − 𝑟2𝑥)𝑤]

𝑟1 ,                                 (C.7) 

which is an implicit equation of 𝑠 that depends on all the original variables except 𝑡. In a similar fashion, we 

obtain the relation 

   𝑟2
𝑟2𝑥𝑟2+1𝑣𝑟1+𝑟21 = λ𝑝1

𝑟1𝑝2
𝑟2𝑟1(1 − 𝑣)[𝑟1𝑦 + (𝑟2𝑥 − 𝑟1𝑦)𝑣]

𝑟2 ,                                   (C.8) 

which is an implicit equation of 𝑡 that depends on all the original variables except 𝑠. Once the value of 𝑤 ∉ {0,1} 
is found in equation (F.7), the corresponding value of 𝑠 is 

        𝑠 = log (
1−𝑤

𝑞2
),                                                                             (C.9) 
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and once the value of 𝑣 ∉ {0,1} is found in Equation (C.8), the corresponding value of 𝑡 is 

                                                                              𝑡 = log (
1−𝑣

𝑞1
).                                                                  (C.10) 

The difficulty in finding the values of 𝑤 and 𝑣 in Equations (C.7) and (C.8) (respectively, the values of 𝑠 and 𝑡 

in Equations (C.9) and (C.10) depends on the values of 𝑟1 and 𝑟2. For example, if 𝑟1 = 𝑟2 = 1, then Equation 

(C.7) transforms into 

𝑦2𝑤3 = λ𝑝1𝑝2(1 − 𝑤)[𝑥 + (𝑦 − 𝑥)𝑤], 

𝑦2𝑤3 + λ𝑝1𝑝2(𝑦 − 𝑥)𝑤
2 + λ𝑝1𝑝2(2𝑥 − 𝑦)𝑤 − λ𝑝1𝑝2𝑥 = 0 

and Equation (C.8) transforms into 

𝑥2𝑣3 + λ𝑝1𝑝2(𝑥 − 𝑦)𝑣
2 + λ𝑝1𝑝2(2𝑦 − 𝑥)𝑣 − λ𝑝1𝑝2𝑦 = 0. 

These are polynomial equations of degree 3 that can be algebraically resolved. More generally, if 𝑟1 and 𝑟1 are 

positive integers, Equations (C.7) and (C.8) can be rewritten, respectively, as 

𝑃(𝑤) = 0, 

and 

𝑄(𝑣) = 0, 

where 𝑃 is a polynomial function of 𝑤 with coefficients in the original variables excluding 𝑡, 𝑄 is a polynomial 

function of 𝑣 with coefficients in the original variables excluding 𝑠 and both 𝑃 and 𝑄 are of degree 𝑟1 + 𝑟2 + 1. 

 

Appendix D 

The second saddle-point equation is 

∂𝐾(𝑡, 0)

∂𝑡
= 𝑥. 

Hence, 

λ [
𝑝1
𝑟1𝑟1𝑞1𝑒

𝑡

(1 − 𝑞1𝑒
𝑡)𝑟1+1

𝑝2
𝑟2

(1 − 𝑞2)
𝑟2
] − 𝑥 = 0. 

The substitution 1 − 𝑞1𝑒
𝑡 = 𝑤 is applied to obtain 

λ𝑝1
𝑟1𝑟1(1 − 𝑤)𝑝2

𝑟2

𝑤𝑟1+1(1 − 𝑞2)
𝑟2
− 𝑥 = 0 

and this equation can be manipulated to obtain 

λ𝑝1
𝑟1𝑟1(1 − 𝑤)𝑝2

𝑟2

𝑤𝑟1+1(1 − 𝑞2)
𝑟2
= 𝑥, 

λ𝑝1
𝑟1𝑟1(1 − 𝑤)𝑝2

𝑟2 = 𝑥𝑤𝑟1+1(1 − 𝑞2)
𝑟2 , 

𝑥(1 − 𝑞2)
𝑟2𝑤𝑟1+1 + λ𝑝1

𝑟1𝑝2
𝑟2𝑟1𝑤 − λ𝑝1

𝑟1𝑝2
𝑟2𝑟1 = 0, 

which is a polynomial in the variable w of degree 𝑟1 + 1, namely, one polynomial equation of the type 

                                                                        𝐴𝑤𝑟1+1 + 𝐵𝑤 − 𝐵 = 0,                                                                    (D.1) 

with 𝐴 = 𝑥(1 − 𝑞2)
𝑟2  and 𝐵 =  λ𝑝_1^{{𝑟_1}}𝑝_2^{{𝑟_2}}{𝑟1}. The difficulty of solving this equation by 

algebraic methods depends on the value of 𝑟1. For example, if 𝑟1 = 2, then Equation (D.1) is transformed into 

                                                                             𝐴𝑤3 + 𝐵𝑤 − 𝐵 = 0,                                                                     (D.2) 

which is a depressed cubic 

                                                                                 𝑥3 + 𝑝𝑥 + 𝑞 = 0,                                                              (D.3) 
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with 𝑝 =
𝐵

𝐴
 and 𝑞 = −

𝐵

𝐴
. 𝐼𝑓4𝑝3 + 27𝑞2 > 0, then the depressed cubic (D.3) has the real solution 

𝑥 = √−
𝑞

2
+ √

𝑞2

4
+
𝑝3

27

3

+ √−
𝑞

2
− √

𝑞2

4
+
𝑝3

27

3

. 

This implies that if 
4𝐵3

𝐴3
+

27𝐵2

𝐴2
> 0 (for example, if 𝐴 >  0 and 𝐵 >  0), then Equation (D.2) has one real 

solution 

                                                      𝑤 = √ 𝐵

2𝐴
+ √

𝐵2

4𝐴2
+

𝐵3

27𝐴3

3

+ √ 𝐵

2𝐴
− √

𝐵2

4𝐴2
+

𝐵3

27𝐴3

3

, 

which is 

                                                       𝑤 = √ λ𝑝1
2𝑝2

𝑟2

𝑥(1−𝑞2)
𝑟2
+ √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

                                                           +√
λ𝑝1

2𝑝2
𝑟2

𝑥(1−𝑞2)
𝑟2
− √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

Substituting 𝑤 = 1 − 𝑞1𝑒
𝑡, we obtain that 

                                  1 − 𝑞1𝑒
𝑡 = √ λ𝑝1

2𝑝2
𝑟2

𝑥(1−𝑞2)
𝑟2
+ √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

                                                  +√
λ𝑝1

2𝑝2
𝑟2

𝑥(1−𝑞2)
𝑟2
− √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

                                         𝑞1𝑒
𝑡 = 1 −  √

λ𝑝1
2𝑝2

𝑟2

𝑥(1−𝑞2)
𝑟2
+ √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

                                                  −√
λ𝑝1

2𝑝2
𝑟2

𝑥(1−𝑞2)
𝑟2
− √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

                                             𝑒𝑡 =
1

𝑞1
[1 −  √

λ𝑝1
2𝑝2

𝑟2

𝑥(1−𝑞2)
𝑟2
+√

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

 

                                                 −   √
λ𝑝1

2𝑝2
𝑟2

𝑥(1−𝑞2)
𝑟2
− √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

] 

                                            𝑡̂0 = log {
1

𝑞1
[1 −  √

λ𝑝1
2𝑝2

𝑟2

𝑥(1−𝑞2)
𝑟2
+√

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

. 

                                                   −   √
λ𝑝1

2𝑝2
𝑟2

𝑥(1−𝑞2)
𝑟2
− √

λ2𝑝1
4𝑝2

2𝑟2

𝑥2(1−𝑞2)
2𝑟2
+

8λ3𝑝1
6𝑝2

3𝑟2

27𝑥3(1−𝑞2)
3𝑟2

3

]}. 
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  نقطة السرج المشروط للتوزيعات الثنائية المركبة المبتورةتقريب 
 ، عتيق بن أحمد الغامدي*أمل دخيل الله الحجيلي

 المملكة العربية السعودية جدة، ،جامعة الملك عبد العزيزقسم الرياضيات، 
*aalhejaili0005@stu.kau.edu.sa  

تهدف غالبية الأبحاث المنشورة في موضوع المتغيرات العشوائية ثنائية المتغير المركبة إلى تفسير . مستخلصال
الظواهر في مختلف مجالات التطبيق. وعلى الرغم من أن هذه التوزيعات قد استحوذت على بعض الاهتمام 

ة الحساب المركبة بسبب صعوب في الدراسات السابقة، إلا أن هناك القليل من الأبحاث حول التوزيعات الثنائية
في استخدامها. تقدم هذه الدراسة طريقة تقريب نقطة السرج المشروط للتوزيعات الثنائية المركبة المبتورة، والتي 
أظهرت تفوق على طرق التقريب الأخرى في التوزيعات المتصلة والمنفصلة. وقد ناقشنا التقريب المشروط 

أمثلة على التوزيعات المتصلة والمنفصلة من توزيعات بواسون الثنائية المركبة للدالة التوزيع التراكمي وقدمنا 
المبتورة، وقارنا بين تقريب نقطة السرج المشروط والحساب المحكم للدالة التوزيع التراكمي حيث ظهر تفوق 

 .كبير لطريقة تقريب نقطة السرج المشروط

التوزيع  ،اكميدالة التوزيع التر  ،التوزيع المركب ثنائي المتغير ،تقريب نقطة السرج المشروط :الكلمات المفتاحية
 .ثنائي الحدين سلبي-التوزيع المركب ثنائي المتغير بواسون  ،جاما-المركب ثنائي المتغير بواسون 

 
 
 
 
 
 
 
 
 
 
 
 


