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Abstract. The majority of existing research that is related to our study aims to explain phenomena in various
fields of application that rely on bivariate random variables. Although these distributions have attracted some
attention in the literature, little research exists on the bivariate compound distribution due to computational
difficulties in implementing it. This study introduces the conditional saddle-point approximation method to the
bivariate compound distribution in continuous and discrete settings, which is more powerful than other
approximation methods. We discuss conditional approximations for cumulative distribution functions of
bivariate compound distributions. Furthermore, examples of continuous and discrete distributions from the
bivariate compound truncated Poisson compound class are presented, and comparisons between saddle-point
approximations and exact calculations show the high accuracy of the saddle-point methods.
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1. Introduction

Sums of random variables of the form X; + X, + X5 + --- + X, can be found in a variety of
contexts and have a random index N that is independent of the X; terms. These types of sums
are referred to as “stopped sums” by [l and 2. Compound distributions have a wide range of
applications in insurance claim modelling B1, particle counters, birth processes, shot noise,
damage processes, renewal processes 11 pranching processes [, risk theory [l and stopped
random walks 1. The total claim amount submitted to an insurance provider, where N is the
number of claims and the X; terms are the individual claims that are considered independent
of each other, can be modelled using a compound distribution.

The Poisson distribution is one of the most common families among compound
distributions, where N is a random variable from Poisson(A). Damage process distributions,
such as Poisson(1) V Bernoulli(p);the  Hermite distribution, Poisson(1) Vv
Binomial(2,p); and the Neyman type A distribution, Poisson(A) vV Poisson(¢), are all
members of the compound Poisson distribution family (see ©)).

The saddle-point method that is used to derive asymptotic approximations of integrals
of a certain type is known to give remarkably good approximations. In Daniel’s work 1% it
was shown that this technique could be applied to the problem of approximating densities of
sums of independent random variables. To apply the resulting approximation, it is necessary
to know the cumulant generating function (CGF). A saddle-point approximation for a
cumulative distribution function (CDF) was suggested by ¥ for continuous distributions.
Daniel [*?1 also introduced two continuity modifications for tail approximation. Robinson 3l
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presented a general saddle-point approximation technique that can be applied to tail probability
approximation. Wang 4 generalized Lugannani and Rice’s method to the case of a bivariate
probability distribution function using variable transformations. Barndorff-Nielsen [*3 derived
a saddle-point density approximation for conditional distributions. Skovgaard [*®1 proposed a
saddle-point approximation for conditional distributions. Saddle-point approximations in
randomization theory were discussed and developed by [ and 8. Butler’s work [*°! on
saddle-point approximations provides a good review of the field and outlines applications of
saddle-point approximations.

Most current research focuses on explaining phenomena across diverse application areas
that involve bivariate random variables 2?1211 | et Z; be a sequence of iid bivariate random
vectors, wherein Z; = (X;,Y;)T with X; and Y; possibly being dependent. The bivariate
compound distribution is defined by the following distribution:

SN=Z1+Z,+Zs;++Zy=CL,X;, X, YT, (1)
where N is independent of the Z; terms.

Let Ks,, (t,s) = log (MSN(t, s)) be the joint CGF of Sy, where Mg (t,s) is its joint
moment-generating function (MGF). It is easy to show, using [??, that the joint CGF of Sy is

Ks, (t,s) = KN(KZ(t, s)) . 2)

Saddle-point approximations can be obtained for any statistic that admits a CGF in (2).
Saddle-point approximation works by inverting the CGF to approximate the CDF of Sy.

Section 2 presents the main idea of this study and the conditional saddle-point formulas
that are used in the following sections. The bivariate compound Poisson—gamma distribution
is considered in Sec. 3 as a continuous example of the bivariate compound Poisson class. In
Sec. 4, we give an approximation for the bivariate compound Poisson-negative binomial
distribution with three continuity corrections. Conclusions are given in Sec. 5.

2. Conditional Saddle-point Approximations for the Bivariate Compound Distribution

We derive saddle-point approximations for conditional densities and mass functions
using two saddle-point approximations: one for the joint density and the other for the marginal.
Despite appearing to be very complex to present or not feasible, these conditional probability
approximations are very important because they give us alternative methods of computation,
possibly based upon simulation methods. See Reid % for additional details on conditioning
techniques in statistical inference.

By approximating the numerator and denominator separately with saddle-point
expansion, conditional density can be expanded with large deviation with ease. For more
details on the so-called double saddle-point approximation, see (71 It is evident that this
approximation maintains the same characteristics in terms of relative error uniformly within
sets of significant deviations as single saddle-point expansions. This method is easy to use if
the conditional CGF is tractable for additional calculations, though this is not always the case.
However, it should be kept in mind as a preferred choice whenever possible because the
expansion calculated below is based on a saddle-point expansion of a multivariate integral,
which may be less accurate than for one-dimensional integrals. For the calculation of the
expansion for the conditional distribution function, see [*8l. The CGF for the distribution of the
entire random variable vector under study must be known, and two saddle-point equations
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need to be solved: one for this random variable vector and one for the vector of conditioning
coordinates.

Given that F(y|x) admits a density and that Y is a continuous variable, the estimate
provided by [*81 can be summarized as follows:

Pr(YzylX=x)~1-0@+¢@ (3-3), =0, 3)

where

i = sgn(s) JZ[{KN(KZ(E, 0) — fox} — (Kn (K, G, 8) — Ex — $y)],

h=3 J |1<,'V'(1<Z(£, ) (K2 (5 8))" + Ky (& DK (K, (G, §))| /K1(Eo, 0)

and £, 3, and £, are the solutions of the saddle-point equations K’ (K, (£, §))Kz(t)(f, $) =x,
K’y (K (E, §))KZ(S)(1?, $) = y (these are the numerator saddle-point in the approximation) and
K’y (K (£, 0))1(2“)(1?0, 0) = x (this is the denominator saddle-point), respectively, where
Kz(t) = aa%’ KZ(S) = a% , and sgn(8) captures the sign + for 5. As long as (x,y) € I,(denotes

the interior of the convex hull of the support y), Equation(3) holds. Both sets of saddle-points
are located within S, the joint convergence region connected to K(t, s), so both Hessians in §
are positive definite. In addition, the square roots of $ are clearly defined.

The lattice distribution is a discrete probability distribution that is focused on a set of
points of the form y + nh, where n = 0, +1, £2, £3, ... ; y is a real number; and h > 0. The
lattice distribution step is denoted by the number h. If the support of Y is the integer lattice,
then the continuity corrections to (3), as implemented in [*8 should be used to achieve the
highest accuracy.

First Continuity Correction

If ,5 is the result associated with K'y(K,(,8))K';(£,3) = (j,k) for a numerator
saddle-point whose § # 0, then we have the following:

1371(Y2k|X=j)z1—q§(d)+¢>(d)<%—5—11), §#0, 4)

where

@ = sgn(®) [2[{Kn (K5, 00) — tof} — (K (K, (2.5)) — & — 3K} )

by =(1-e) J | (K2 (8, 8)) (K2 (8,8))° + K (£, 9Ky (Ko (E D) | /Kl (0, 0) . (6)

Therefore, £ solves K'y(K; (£, 0))KP (£, 0) = j.
Second Continuity Correction

Given that the offset saddle-point is represented by (t,s7),and k= = k — 1/2 denotes
the offset of k, we can compute
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K’y (K, (& 9)K,(E 8) = (j, k— %) . 7)
Given that § # 0, then
13?2(Y2kIX=j)z1—¢(dz)+¢(dz)(aiz—%), §#0, (8)
where
i, = sgn(§)\/2[{KN(KZ(f, 0)) — toj} — {Kn(Kz(£,3)) — & — 5k}, 9)

b, = 2 sinh (§)J |3t (K2 (& ) (K E9)° + Ky (9K (Ko (F )| /Kit (86,0) . (10)
and the saddle-point, 7,, remains unaltered.

3. The Bivariate Compound Poisson-Gamma Distribution

As a continuous distribution example, consider Sy in (1) where N is distributed as
Poisson(A) with My (s) = exp A(e’ — 1) and the X; and Y; terms are iid random variables
that follow a Gamma(a,, B,) V Gamma(a,, ,) distribution, with a joint distribution
My (t,s) = (1 —B1t)~*1(1 — B,t)~*2 that is independent of N; then Sy has the bivariate
compound Poisson-gamma distribution 24, Applications of the Poisson—gamma model are
wide ranging: it has been used on catch and effort data in 2°, in recruitment in multicentre
trials, in insurance, and in pump failure 126, As the S, distribution is not continuous due to a
point probability, Pr(N = 0), at zero, the truncated distribution can be used [?"l. However, the
MGF of N is

My (s) = [expA (e® — 1) — exp(—=D]/(1 — exp(—21));
hence, the MGF of Sy = YV, 7; is

MSN(ti S) = MN (log MX,Y (t' S))' [11)
_exp (A(Mx,y (t,s) — 1)) —exp(—2)
Mayts) = (= (1) '

and the CGF of Sy is
Ks, (t,8) =logM;, (i,9),

= log ((1 -q)! [exp (7\ <(1 — [1313)%) ((1 — ;2§)°‘2> - 7\) - q]) (12)

[‘”‘p (A<<1 — é&)%) ((1 - ézs?)‘”) - A) N "]
1-q '

= log

where g = e,

The numerator saddle-point solves
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K'n(Kz (£ 9)KP(E8) = x,

(15)
K'n(Kz (&) (E,8) =y,
that is,
A
Aaify exp((l—Blt)al(l—BZS)az 2) -
- - . —x =0, (13)
(1-B10 (1-9)%2 (1~10)|exn( = ggymirgamyms—) -]
A
Aazf, exP((l—Blt)al(l—ﬁzs)“z ") =
) -y =0, (14)
(1-B1)71 (12572 (1= 29| ex0 (=g —2) 1
which implies (see Appendix A)
_1
. 1 (A (a, By ]ate
b
B1 z\ayfrx
1 (15)
1 (1 afix “1]a;+a;
ke T
B2 z\az B2y
and the denominator saddle-point solves
K’N(Kz(fo, 0))Kz(t)(£o.0) =X, (16)
that is,
A
rabenlipan ) (17)
(1-B10)%1 (1~B10) exp(=grar—2) 4]
which gives (see Appendix B)
1
o- L ATy
bo=5 l1 + (z) l (18)
In addition,
A
A7 exp - =)
Kt_{,(t, S) _ (1 ﬁlt) (1 ﬁZS)

(1 - B (1~ B5)% (1 — By1)? [exp((l A —gE ) ]
=)

st e (g

A= AR =hem = fo? [e"”((l rona—pom 4=
_ ,1)

+

Faift e (T prma=p
A
(1= B1t)?*1(1 = Bp5)?*2 (1 = By t)? [exp ((1 — P14 (1= f5)% /1) B q]

+
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/‘{ 2
. 22ai? (e (=g —ge= )
(1 = p10)**1 (1 — f5)2%2(1 — B1t)? [exp ((1 - ﬁ1t)a1/1(1 — By5)% /1) —4

A
Aa3 3 exp ((1 — BT A= B 1

K'(t,s) = 5 i
(=1 = B9 (1L = B0 |exr (T mmra—pym — 2) 1|
A
) Ay exp ((1 — B (1 = Bp5)% A) _
(= B0% (U= B3 (1 = )2 [exw (=g =gy — %) ~ 4
)IZCZZ,BZ exp( ] A _ ) (20)
. P e\ —pona=po™

(L= Bi67s(1 = 5% (1 = )2 |exr (=g —pmym —2) 9]
2

Aza% 22 (exp ((1 — ﬂlt)“1/1(1 — B,5)% B A))

- A
(L= B672 (1 = 5% (1 = )2 |exr (T =gy = 2) — ¢
Note that
K" w (K7 (59) (K, (E9) + K" E DK v (K (E5) = K" (t,5).
This Hessian matrix can be obtained by

K”tt(tis) K”ts(t,S) " 62
17 " ) K t,s =—K t,s), etc.,
K" (t,s) K'55(t,5) () (£:5)

at?
with det K" (t,s) > 0 (positive definite).

K"(t,s) = [

The conditional saddle-point approximation for the continuous CDFs
Pr(Y =y | X = x)given by (3) and £, 5, and £, are as in (16) and (19), respectively.

To see the accuracy of the conditional saddle-point approximation, consider the
Poisson(4) v Gamma(1,2), Gamma(1,4) distribution. Table 1 provides the exact value and
conditional saddle-point approximation of Pr(Y > y|X = x) at some values of x, y. The exact
value of the CDF of Sy, is calculated by simulating 106 values of Sy. Each value is calculated
by generating N, from Poisson(4) and x,y values from the Gamma(1,2), Gamma(1,4)
distribution. The conditional saddle-point approximation is very accurate.

Table 1. The exact and conditional saddle-points of the CDF for the bivariate compound truncated Poisson(4) v
Gamma(1,2), Gamma(1,4) distribution.

X Y Exact F(y|x) Relative Error
25 1.5 0.0677707 0.0689926 0.017710595
25 2.0 0.0740187 0.09687894 0.235967074
25 35 0.0918188 0.1890771 0.514384344
5.5 1.5 0.0766979 0.02113559 2.62885.673
5.5 25 0.0975687 0.04549499 1.144603175
75 1.5 0.078945 0.01104324 6.148717224
7.5 25 0.1025864 0.02580095 2.976070649
75 35 0.128174 0.04645276 1.759233251
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4. The Bivariate Compound Poisson-negative Binomial Distribution

The bivariate compound Poisson-negative binomial models are naturally found in the
fields of insurance and actuarial science, and many authors have studied them 281, The issue of
approximate compound Poisson distributions for compound negative binomial distributions
was addressed by 29 [0 31 and 21 Numerous social, financial, and physical issues can be
effectively modelled using this distribution — for example, the total number of orders placed
and items sold each day, the total number of insurance claims and claimants each hour, the total
number of injury accidents and fatalities, and the total number of visits and drugs prescribed.

Let N be the number of claims that occurred in a fixed time period, which follows a
Poisson(A) distribution with My (s) = exp A(e® — 1), where the X; and Y; terms are iid
random  variables that follow a (Negative — Binomial(ry,p,), Negative —
Binomial(r,, p;)) ditribution, with a joint distribution M(t,s) = (p1/(1 - gie9))” *(pa/
1- qzes))_rz. Then, Sy in (1) follows a bivariate compound Poisson-negative binomial

distribution with CGF
oy (£,5) = 2 (2 )rl (== )Tz - 1). 1)

1-q et 1—-qqes

The numerator saddle-point, £, §, and the denominator saddle-point, £,, solve the saddle-
point equations K'.(to,s0) = j, K's(to,s0) = kand K'.(£,,0) = j, respectively, for j, k =
0,1,2, ..., and are given by

§=log (1;2“”) 22)
t =log (1q_—1v) (23)

The values of w,v & { 0,1}, respectively, are found in the following equations (see
Appendix C):

YW = Qpip P, (1 = w)[rnx + (ry — 0w, 24)
Tzrzxr2+1vr1+r21 = /1171113;27”1(1 —v)[ry + (rpx — 1 y)v]™?, (25)
and the denominator saddle-point is
(
i — log J 1 L _ | andpy j 22pip;” 82°p{p,
qll x(1—q2)  \x*(1—qp)*2  27x3(1 —qp)%"

\

| awipy \/ 2pip,” 84°pip,” } l

x(1—qy)" ’

x2(1—qp)?>  27x3(1 - qZ)ngJJ

See Appendix D.

Whenj = 0ork = 0,Pr(N = 0) = e~ Forj,k # 0, the conditional saddle-point
approximation for the distribution is calculated by (5), where K (£,8) K" ;. (£,,0), K (£o, 0),
and |K"(t,s)].
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Conditional saddle-point continuity-corrected approximations Pr; = (Y = k|X = j),
i = 1,2 are given in (5) and (9).

To assess the accuracy of the conditional saddle-point approximations, consider the
Poisson(5) V Negative — Binomial(2,0.5), Negative — Binomial(2,0.5) distribution.
Table 2 provides the saddle-point approximations to the distribution of Sy. Each line represents
the exact value, Pr = (Y > k|X = j), with the two continuity-corrections for j,k = 1,2,3, ...
The exact p value is calculated by simulating 10° values for Sy by simulating N from
Poisson(5) values and generating N  values from the Negative —
Binomial(2,0.5), Negative — Binomial(2,0.5) distribution. The saddle-point
approximations show great accuracy. In most cases the second correction is better than the
first correction. This could be because of the continuity correction term, (1 — e~*) (Equation
7), which seems to modify the CDF probability in a way that isn’t consistent with the
continuity correction.

Table 2. The exact and conditional saddle-points of the CDF for the bivariate compound Poisson(5)V
NegativeBinomial(2,0.5), NegativeBinomial(2,0.5) distribution.

X Y Exact Pry Pr, Relative Error (Pra) Relative Error (Pr2)
1 1 0.25 0.2787989 0.2618004 0.103296319 0.045074034
1 2 0.34375 0.40079085 0.3914946 0.142320739 0.121954706
1 3 0.40625 051601354 05099798 0.212714457 0.203399883
2 1 0.171875 0.18385286 0.1718464 0.065149163 0.000166602
2 2 0.236328 0.29021717 0.2828212 0.185685671 0.164390759
2 3 0.279297 0.4003707 0.3951325 0.302403997 0.293156075
3 1 0.135417 0.12920385 0.1203312 0.048087963 0.125369169
3 2 0.186198 0.21887119 0.212859 0.149280451 0.125251722
3 3 0.220052 0.31871378 0.3141364 0.309562329 0.299501767
4 1 0.111328 0.09403932 0.0873369 0.183845226 0.274695596
4 2 0.153076 0.16889246 0.1639764 0.093648112 0.066475647
4 3 0.180908 0.2574482 0.253468 0.297303302 0.286268737
5 1 0.09375 0.070077 0.064937 0.337814119 0.443706978
5 2 0.128906 0.132383 0.128347 0.026264702 0.00435538
5 3 0.152344 0.210072 0.206624 0.274801021 0.262699396

5. Conclusion

This article provides methods for calculating conditional saddle-point approximations for bivariate
compound distributions. The bivariate compound class includes the bivariate Hermite distribution, the bivariate
Neyman type A distribution, the bivariate Pélya—Aeppli distribution, and the bivariate Thomas distribution. Our
conditional saddle-point approximations are very accurate and quickly calculated approximations. Moreover, our
method is easy to implement and requires little computational effort. We demonstrate the effectiveness of our
conditional saddle-point approximations in both discrete and continuous settings using numerical examples.
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Appendix A
We solve the saddle-point equations as below:

Ranfpexp{A(1-ft) ™ (1- Bos) -2
(1- )™ (1 Bys) (1- /i’lt)[exp{ﬂ(l— A (1-f5) -] —e‘q

2 exp{ (1= A1) (1= fo5) 2 - 2
(1- )™ (L- Bys) (1- ﬂzs)[exp{ﬂ(l— B (1= f8)  -2) - e‘q

_y=o

The terms x and y are placed on the right side of their respective equations, and the first equation is divided by the
second equation to obtain the relation.

a3 (1= 58) _Xx
af(1-Bt) Y
(A1)

The substitutions (1—/31t) =wand (1—,825) =v are made so that equation (A.1) takes the form

aqpVv X

G BW Y .
and
azBawx

=== - A2
v a1 By ( )

Then, the first equation can be rewritten as

A
Aalslexp<wa1(“232WX)a2_A>
a1y
Woc1(w)azw exp #_)\ —q
WC(]_(“ZBZWX')O(Z
a1y

a1B1y
A .
————;, We obtain
w1 (0(2 BzWX)
a1B1y

= x. (A3)

Making another substitution, =

A A (%Bﬂ’)“z
zZ= =

w1y %2 (M)az wea T oy Bax
o By

oaptoy — %:(cxl[gl)/)(xz

Z \Qy Bzx
1

_[ (0‘1313’) ]“1"‘0‘2. (A4)

azB2x

w

with the caution that a double sign may appear if o +, is even, Equation (A.3) takes the form
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za1 B4 exp(z—2)
T

= X.
[&(%_M)“z]m

\agpyx [exp(z—2)—q]

then

za, By exp(z — )

1
Ay Byy) 2 |tee
[E (azﬁzx) ]

zay By exp(z — A)
e T

Z \Oy Bzx

= x[exp(z — M) —ql,

=xexp(z—A) —xq,

14—t _Y2
z° ez, exp(z —A) (0(2 62X>0l1+0(2

T —xexp(z—2A) +xq =0,

A&;;a; alBly

1-—%2 _d
(alﬁl) agt+a; a282x>a1+a2 G tap+l

T z Utz exp(z—A) —xexp(z—2A)+xq =0,

)\0(1+0L2 y
2%
[ [ o,B,x e o+, +1 ] ~
(g By)ratez z Mtz —xlexp(z—2A)+xq =0,
l 76523/ J

az

2 wB,x ajtap  aptap+l
(0(1[31)“1+"‘2 TZ zut2 — xlexp(z) + xqgexp(d) = 0,
292y

(A.5)

which is an equation that implicitly depends only on t and not on s. Again, the caution of a double sign before the

agtop+l

coefficient of z «1tez may appear if ¢ + «, iseven. Once a value of z that satisfies equation (A.5) is determined,

the corresponding value of t is found by substituting back as follows:

Recall equation (A.4) as

1
[ﬂ. (0»’1,813])“2]“1"’“2
w=|— ,
z\a,,x

and the substitution (1-t)=w, we obtain

1
A (alsly)“z]m

z \a,B,x

1-pe-|

then
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z \0z B2 x
o
1 Asa 2 |ato
P = — 1_[_( 1[31)’) ] ,
B4 z \a,,x

with the caution that a double sign may appear before the power if o + r, is even.

Bit=1— [&(asy)];

To obtain the value of s, observe that z can also be written in terms of v only, as follows: equation (A.2) can be
manipulated to obtain

— aB1vy |
aszx'

therefore,
A

(“1B1Vy)“1va2’
azB2x

and as with equation (A.4), we obtain that

o= BT

with the caution of a double sign if «; + «, is even. This implies that equation (A.5) can also be seen as an equation

that implicitly depends only on s and not on t. Once a value of z is found, the corresponding value of s can be
found by substituting backwards:

(A 7oy B2\ |tz
1-PB2s= —(£> ' 2,
zZ \oz B2y

_ e
A o X 1log+ay

Bas =1~ —(i> ' )
z \ay B2y

1
1 " A <a181x>°‘1' agtay

s=—
z\0oy 32y

B>

with the caution that a double sign may appear if «; +«, is even.

Appendix B
To find the value of f, we solve
0K, (t)
ac

Acy By exp (ﬁ -1

(1= B1)*1 (1 — Byt) [exp (w _ 7\> _ q] —x=0.

The substitution z = is applied to obtain

B 0%
1

o= (f
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with the caution that a double sign may appear before the power if a; is even. The equation is transformed into
za, B, exp(z — )
1 )

(3)* [exp(z = 1) — ]

and we have that

ag+1

7% @By exp(z) = Ax(exp(2) — g exp(h)),

ap+1 1 1
<a1[312 a — Aalx) exp(z) + Avixqg exp(A) =0

as in Equation (A.5). Therefore, the solution of the original equation is

where z satisfies

a+1 1 1
(alﬁlz . — Aalx) exp(z) + A%1xq exp(4) = 0.

In addition, if a, is even, the double-sign versions

ai+1 1 1
(ialﬁlz a — A“lx) exp(z) + A%1xq exp(Ad) = 0,
1
f-rlix(d)
0 Bi| T \z '
should be considered.
Appendix C

We solve the saddle-point equations to find t, s as below.

The variable t is eliminated in the equation

[ 1 t T2
1 by 1q1€ (&) —x=0
(1 —q1e)1*1 (1 — ge°)"2 '
and the variable s is eliminated in the equation
/1_ 28 Py 12z’ —y=0
_(1 —qe)" (1 - fhes)rzﬂ_ '

This is achieved by substituting 1 — g;ef = w and 1 — g,e’ = v into the equation to obtain

Ap;tpy2ri(1-v)
1Ur12+1wr2 — — X = 0, (Cl)
Ap; 1,2 (1-w)
e Y =0 (C2)
The goal is to eliminate the variable v in Equation (C.1) and the variable w in Equation (C.2). Observe that w =
0and v # 0. The term w2 in Equation (C.1) is isolated to obtain
_ Ay tpy2r(1-v)
wrz = 21 vT21+1x : (C.3)

and the term v™ in equation (C.2) is isolated to obtain
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Apyipy2ra(1-w) (C.4)

T
vt =
WT2+1y

It is observed that w # 1 and v # 1. Equation (C.3) is divided by Equation (C.4) to obtain

wz dppn(1-v)  whtly
v vitly Apyipry (1 —w)
w2 _ rwT2+ly(1-v)
vl rvT1tlx(1-w)’
Therefore,
ryw(l—v)

rxv(l —w)
which implies that

YW — "YWV = XV — 1, XUW.

Then,
ryw + (px —ry)wv —nrnxv =0,
leading to
B Ty XV
ry + (px —ny)v’
and
_ YW
v= rx+(r y—rx)w’ (C5)
In addition,
ry(1—-v)
1—w= )
1y + (nx —ny)v
and
1—p =12 (C.6)

X+ y—rx)w’

The values of v in Equation (C.5) and 1 — v in Equation (C.6) are substituted into Equation (C.3) to obtain
T1pT2,, rx(1—w)

Apy Py’ Irx+ (ny —nxw

)

[ ryw r+1

x
rnx + (ry — rx)w

w2 =

r+l, or +1, 714721 1,72
ntxy™ 1472 _Apy 't x(1—w)

[x + (ny — oOw]™*1 T rx + (ny —nxw’

T yr1+1 r1+121 T1 vy

1 )
[rox + (ny — T'Zx)w]ﬁ P1 P, 7, ( w)

YW = ApTiplen (1= Wl + (Y — 0wl (€7)

which is an implicit equation of s that depends on all the original variables except t. In a similar fashion, we
obtain the relation

T1.,72

pritrl — }\pl 12 Tl(l — 1]) [le + (sz — le)U]rz, (C-8)

r
rzzxr2+1

which is an implicit equation of t that depends on all the original variables except s. Once the value of w & {0,1}
is found in equation (F.7), the corresponding value of s is

s =log (1 W) (C.9)
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and once the value of v & {0,1} is found in Equation (C.8), the corresponding value of ¢ is
t =log (2;1”) (C.10)

The difficulty in finding the values of w and v in Equations (C.7) and (C.8) (respectively, the values of s and ¢
in Equations (C.9) and (C.10) depends on the values of r; and r,. For example, if r, = , = 1, then Equation
(C.7) transforms into

yw? = apip, (1 = w)lx + (y — x)w],
Y2w? 4+ Ap1p, (v — )W + Ap1p2 (2x — y)w — Apypox = 0
and Equation (C.8) transforms into
X203 4 Ap1py (x — y)V? + Ap1p,(2y — x)v — Apypoy = 0.

These are polynomial equations of degree 3 that can be algebraically resolved. More generally, if r; and r; are
positive integers, Equations (C.7) and (C.8) can be rewritten, respectively, as

P(w) =0,
and
Q) =0,

where P is a polynomial function of w with coefficients in the original variables excluding t, Q is a polynomial
function of v with coefficients in the original variables excluding s and both P and Q are of degree r; + 1, + 1.

Appendix D
The second saddle-point equation is
9K (t,0)
ac
Hence,
J|opinaet  w ]
(1= gief)"* (1 —gqx)™ '
The substitution 1 — q,e® = w is applied to obtain
Apy'ri(1 = w)py® 0

W = g,)"

and this equation can be manipulated to obtain

Aprtn(1—wpy?
Wr1+1(1 _ CIZ)rZ =X

Api'r (1 = w)p)? = 2w+ (1 = q)",
x(1 = q)"2w™ ™t + Ap'py*rw — Apy'pyr = 0,
which is a polynomial in the variable w of degree r; + 1, namely, one polynomial equation of the type
Aw™*' + Bw — B =0, (D.1)

with A = x(1 — g,)™ and B = Ap_17{{r_1}}p_2"{{r_2}}{r }. The difficulty of solving this equation by
algebraic methods depends on the value of ;. For example, if r; = 2, then Equation (D.1) is transformed into

Aw® + Bw —B =0, (D.2)
which is a depressed cubic

x*+px+q=0, (D.3)
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with p = %and q= —%. If4p® + 27q% > 0, then the depressed cubic (D.3) has the real solution

3 2
This implies that if % + @ > 0 (for example, if A > 0and B > 0), then Equation (D.2) has one real
A A

solution
3 3
B B2 B3 B B2 B3
w= =+ [t == [,
2A 4A 27A 2A 4A 27A
which is
3 2 3
_ 7| apipl? A2pip; 2 8A3pSp, 2
x(1-q2)"2 x2(1-q2)%"2 ~ 27x3(1-q3)3"2
3 2 3
Apipy® | A2pip,? 8A3pp, 2
x(1-q2)"2 x2(1-q2)?"2  27x3(1-q)3"2

Substituting w = 1 — g, e®, we obtain that

3 T 27" 37
1—qet = Apip,” A2pip, 2 8A%pip, °
1 x(1-q2)"2 x2(1-q3)?"2 27x3(1-q3)3"2
3 2 3
Apipy® | A2pip,? 8A3pSp, 2
x(1-q2)"2 x2(1-q2)?"2 ~ 27x3(1-q3)372
3 2 3
q et =1 — )\p%pgz ?\Zp‘l}pzrz 8)\3pfpzrz
L x(1-q2)"2 x2(1-q2)%2  27x3(1-q;)3"2
T 27" 3r
Anipy® | A%Pip, ? 81 3pip, °
x(1-q2)72 x2(1-q2)%"2  27x3(1-q3)3"2
2 3
ot = L|q_ | win? Apip, " 813p{p, "
a1 x(1-q2)"2 x2(1-q2)?"2  27x3(1-q2)3"2
3 T 27" 3r
_ | wEn? | Mpipy 81 3pip, °
x(1-q2)"2 x2(1-q3)?"2 27x3(1-q3)3"2
T 2r 37
£ =log{L|1- Apiv,? Apip, 81 %pip, °
0 a x(1-q2)"2  \x2(1-q2)%"2  27x3(1-q3)3"2
3 2 3
Apipy? | A2pip,"? 8A3pSps T2
x(1-q2)"2 x¥2(1-q2)?"2  27x3(1-q2)3"2
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